private void ProcessRowFirstPass()
            {
                AssertValid(assertGetters: true);

                Single label = 0;

                _labelGetter(ref label);
                if (Single.IsNaN(label))
                {
                    NumUnlabeledInstances++;
                    label = 0;
                }
                var intLabel = (int)label;

                if (intLabel != label || intLabel < 0)
                {
                    throw Host.Except("Invalid label: {0}", label);
                }

                _scoreGetter(ref _scores);
                Host.Check(_scores.Length == _scoresArr.Length);

                if (VBufferUtils.HasNaNs(ref _scores) || VBufferUtils.HasNonFinite(ref _scores))
                {
                    NumBadScores++;
                    return;
                }
                _scores.CopyTo(_scoresArr);
                Single weight = 1;

                if (_weightGetter != null)
                {
                    _weightGetter(ref weight);
                    if (!FloatUtils.IsFinite(weight))
                    {
                        NumBadWeights++;
                        weight = 1;
                    }
                }

                int j = 0;

                foreach (var index in Enumerable.Range(0, _scoresArr.Length).OrderBy(i => _scoresArr[i]))
                {
                    _indicesArr[j++] = index;
                }

                UnweightedCounters.UpdateFirstPass(intLabel, _scoresArr, 1, _indicesArr);
                if (WeightedCounters != null)
                {
                    WeightedCounters.UpdateFirstPass(intLabel, _scoresArr, weight, _indicesArr);
                }

                if (_clusterCentroids != null)
                {
                    _featGetter(ref _features);
                    VectorUtils.Add(ref _features, ref _clusterCentroids[_indicesArr[0]]);
                }
            }
        public PathFlows <double, TLabel> Aggregate(PathFlows <double, TLabel>[] paths)
        {
            var prices = new double[paths.First().Flows.Length];

            foreach (PathFlows <double, TLabel> pathFlows in paths)
            {
                VectorUtils.Add(ref prices, pathFlows.Flows);
            }
            VectorUtils.Mult(ref prices, 1.0 / paths.Length);

            return(new PathFlows <double, TLabel>(prices, paths.First().Labels));
        }
示例#3
0
        protected void CombineCore(ref VBuffer <Single> dst, VBuffer <Single>[] src, Single[] weights = null)
        {
            Host.AssertNonEmpty(src);
            Host.Assert(weights == null || Utils.Size(weights) == Utils.Size(src));

            // REVIEW: Should this be tolerant of NaNs?
            int len = GetClassCount(src);

            if (!TryNormalize(src))
            {
                GetNaNOutput(ref dst, len);
                return;
            }

            var values = dst.Values;

            if (Utils.Size(values) < len)
            {
                values = new Single[len];
            }
            else
            {
                Array.Clear(values, 0, len);
            }

            // Set the output to values.
            dst = new VBuffer <Single>(len, values, dst.Indices);

            Single weightTotal;

            if (weights == null)
            {
                weightTotal = src.Length;
                for (int i = 0; i < src.Length; i++)
                {
                    VectorUtils.Add(ref src[i], ref dst);
                }
            }
            else
            {
                weightTotal = 0;
                for (int i = 0; i < src.Length; i++)
                {
                    var w = weights[i];
                    weightTotal += w;
                    VectorUtils.AddMult(ref src[i], w, ref dst);
                }
            }

            VectorUtils.ScaleBy(ref dst, 1 / weightTotal);
        }
        /// <summary>
        /// Batch-parallel optimizer
        /// </summary>
        /// <remarks>
        /// REVIEW: consider getting rid of multithread-targeted members
        /// Using TPL, the distinction between Multithreaded and Sequential implementations is unnecessary
        /// </remarks>
        protected virtual float DifferentiableFunctionMultithreaded(ref VBuffer <float> xDense, ref VBuffer <float> gradient, IProgressChannel pch)
        {
            Contracts.Assert(_data == null);
            Contracts.Assert(_cursorFactory == null);
            Contracts.Assert(_numChunks > 0);
            Contracts.Assert(Utils.Size(_ranges) == _numChunks + 1);
            Contracts.Assert(Utils.Size(_localLosses) == _numChunks);
            Contracts.Assert(Utils.Size(_localGradients) + 1 == _numChunks);
            Contracts.AssertValueOrNull(pch);

            // Declare a local variable, since the lambda cannot capture the xDense. The gradient
            // calculation will modify the local gradients, but not this xx value.
            var xx = xDense;
            var gg = gradient;

            Parallel.For(0, _numChunks,
                         ichk =>
            {
                if (ichk == 0)
                {
                    _localLosses[ichk] = DifferentiableFunctionComputeChunk(ichk, ref xx, ref gg, pch);
                }
                else
                {
                    _localLosses[ichk] = DifferentiableFunctionComputeChunk(ichk, ref xx, ref _localGradients[ichk - 1], null);
                }
            });
            gradient = gg;
            float loss = _localLosses[0];

            for (int i = 1; i < _numChunks; i++)
            {
                VectorUtils.Add(ref _localGradients[i - 1], ref gradient);
                loss += _localLosses[i];
            }
            return(loss);
        }
示例#5
0
        /// <summary>
        /// Combine a bunch of models into one by averaging parameters
        /// </summary>
        protected void CombineParameters(IList <IParameterMixer <Float> > models, out VBuffer <Float> weights, out Float bias)
        {
            Type type = GetType();

            Contracts.Check(type == models[0].GetType(), "Submodel for parameter mixer has the wrong type");
            var first = (LinearPredictor)models[0];

            weights = default(VBuffer <Float>);
            first.Weight.CopyTo(ref weights);
            bias = first.Bias;

            for (int i = 1; i < models.Count; i++)
            {
                var m = models[i];
                Contracts.Check(type == m.GetType(), "Submodel for parameter mixer has the wrong type");

                var sub        = (LinearPredictor)m;
                var subweights = sub.Weight;
                VectorUtils.Add(ref subweights, ref weights);
                bias += sub.Bias;
            }
            VectorUtils.ScaleBy(ref weights, (Float)1 / models.Count);
            bias /= models.Count;
        }