示例#1
0
 public void Adding_0_to_a_rational_returns_the_same_value(Rational x)
 {
     Assert.Equal(x, x + Rational.Zero);
     Assert.Equal(x, Rational.Zero + x);
     Assert.Equal(x, Rational.Add(x, Rational.Zero));
     Assert.Equal(x, Rational.Add(Rational.Zero, x));
 }
示例#2
0
        static void Main(string[] args)
        {
            Console.WriteLine("Enter two integers (numerator and denominator): ");
            int num         = int.Parse(Console.ReadLine());
            int denom       = int.Parse(Console.ReadLine());
            var rationalOne = new Rational();

            rationalOne.SetFraction(num, denom);
            Console.WriteLine("Enter two more integers: ");
            num   = int.Parse(Console.ReadLine());
            denom = int.Parse(Console.ReadLine());
            var rationalTwo = new Rational();

            rationalTwo.SetFraction(num, denom);
            Console.WriteLine("\nHow many digits to you want to display in past the decimal?");
            int digits = int.Parse(Console.ReadLine());

            Console.WriteLine("\nReduced first fraction: ");
            Console.WriteLine($"{rationalOne.ToRationalString()}");
            Console.WriteLine("Reduced second fraction: ");
            Console.WriteLine($"{rationalTwo.ToRationalString()}");

            Console.WriteLine($"Added rational numbers = {Rational.Add(rationalOne.ToFloat(), rationalTwo.ToFloat())}");
            Console.WriteLine($"Subtracted rational numbers =  {Rational.Subtract(rationalOne.ToFloat(), rationalTwo.ToFloat())}");
            Console.WriteLine($"Multiplied rational numbers = {Rational.Multiply(rationalOne.ToFloat(), rationalTwo.ToFloat())}");
            Console.WriteLine($"Divided rational numbers = {Rational.Divide(rationalOne.ToFloat(), rationalTwo.ToFloat())}");

            Console.WriteLine("\nPress any key to end program.");
            Console.ReadKey();
        }
示例#3
0
 public void Case1()
 {
     // The statement:
     //    Rational number = Int64.MaxValue + Int32.MaxValue;
     // produces compiler error CS0220: The operation overflows at compile time in checked mode.
     // The alternative:
     Rational number = Rational.Add(Int64.MaxValue, Int32.MaxValue);
 }
        public void Case1()
        {
            byte     byteValue = 254;
            Rational number    = byteValue;

            number = Rational.Add(number, byteValue);
            Console.WriteLine(number > byteValue);                      // Displays True
        }
示例#5
0
        public void Add(Rational r1, Rational r2)
        {
            RationalBase result = r1.Add(r2);

            Assert.True(r1 != result && r2 != result);
            int n1 = r1.Numerator, d1 = r1.Denominator, n2 = r2.Numerator, d2 = r2.Denominator;

            Assert.Equal(new Rational(n1 * d2 + n2 * d1, d1 * d2), result);
        }
示例#6
0
        static void Main(string[] args)
        {
            Rational a = new Rational(3, 4);
            Rational b = new Rational(4, 5);
            Rational c = a.Add(b);

            Console.WriteLine(c.StrVal());
            c = b.Subtract(a);
            Console.WriteLine(c.StrVal());
        }
示例#7
0
        public void NumbersAreZero()
        {
            var num1 = new Rational {
                Numerator = 0, Denominator = 1
            };
            var num2   = num1;
            var result = num1.Add(num2);

            Assert.AreEqual(0, result.Numerator);
            Assert.AreEqual(1, result.Denominator);
        }
示例#8
0
        public void DifferentDenominators()
        {
            var num1 = new Rational {
                Numerator = 1, Denominator = 2
            };
            var num2 = new Rational {
                Numerator = 2, Denominator = 3
            };
            var result = num1.Add(num2);

            Assert.AreEqual(7, result.Numerator);
            Assert.AreEqual(6, result.Denominator);
        }
示例#9
0
        public void SameDenominators()
        {
            var num1 = new Rational {
                Numerator = 1, Denominator = 2
            };
            var num2 = new Rational {
                Numerator = 2, Denominator = 2
            };
            var result = num1.Add(num2);

            Assert.AreEqual(3, result.Numerator);
            Assert.AreEqual(2, result.Denominator);
        }
示例#10
0
        static void Main()
        {
            Rational a = new Rational(3, 4);
            Rational b = new Rational(4, 5);

            Rational c = a.Add(b);

            Console.WriteLine(c.StrVal());

            c = a.Subtract(b);

            Console.WriteLine(c.StrVal());
        }
        public void Case1()
        {
            // Initialize a Rational value.
            Rational value = Rational.Add(UInt64.MaxValue, 1024);

            // Display value using the default ToString method.
            Console.WriteLine(value.ToString());
            // Display value using some standard format specifiers.
            Console.WriteLine(value.ToString("G"));
            Console.WriteLine(value.ToString("C"));
            Console.WriteLine(value.ToString("D"));
            Console.WriteLine(value.ToString("F"));
            Console.WriteLine(value.ToString("N"));
            // The example displays the following output on a system whose current
            // culture is en-US:
            //       18446744073709552639
            //       18446744073709552639
            //       $18,446,744,073,709,552,639.00
            //       18446744073709552639
            //       18446744073709552639.00
            //       18,446,744,073,709,552,639.00
        }
示例#12
0
 internal override Rational Op(Rational lhs, Rational rhs)
 {
     return(lhs.Add(rhs));
 }
示例#13
0
 public void Dividing_the_sum_is_the_same_as_dividing_each_and_then_adding_the_result(NonZeroRational x, Rational y, Rational z)
 {
     Assert.Equal((y + z) / x, (y / x) + (z / x));
     Assert.Equal(Rational.Divide(Rational.Add(y, z), x), Rational.Add(Rational.Divide(y, x), Rational.Divide(z, x)));
 }
 public void Substracting_y_to_x_is_the_same_as_adding_opposite_of_y_to_x(Rational x, Rational y)
 {
     Assert.Equal(x - y, x + (-y));
     Assert.Equal(Rational.Subtract(x, y), Rational.Add(x, Rational.Negate(y)));
 }
示例#15
0
        private static BigDecimal BroadhurstBbp(int n, int p, int[] a, MathContext mc)
        {
            /* Explore the actual magnitude of the result first with a quick estimate.
                */
            double x = 0.0;
            for (int k = 1; k < 10; k++)
                x += a[(k - 1)%8]/System.Math.Pow(2d, p*(k + 1)/2d)/System.Math.Pow(k, n);

            /* Convert the relative precision and estimate of the result into an absolute precision.
                */
            double eps = PrecisionToError(x, mc.Precision);

            /* Divide this through the number of terms in the sum to account for error accumulation
                * The divisor 2^(p(k+1)/2) means that on the average each 8th term in k has shrunk by
                * relative to the 8th predecessor by 1/2^(4p).  1/2^(4pc) = 10^(-precision) with c the 8term
                * cycles yields c=log_2( 10^precision)/4p = 3.3*precision/4p  with k=8c
                */
            var kmax = (int) (6.6*mc.Precision/p);

            /* Now eps is the absolute error in each term */
            eps /= kmax;
            BigDecimal res = BigDecimal.Zero;
            for (int c = 0;; c++) {
                var r = new Rational();
                for (int k = 0; k < 8; k++) {
                    var tmp = new Rational(BigInteger.ValueOf(a[k]), (BigInteger.ValueOf((1 + 8*c + k))).Pow(n));
                    /* floor( (pk+p)/2)
                                */
                    int pk1h = p*(2 + 8*c + k)/2;
                    tmp = tmp.Divide(BigInteger.One.ShiftLeft(pk1h));
                    r = r.Add(tmp);
                }

                if (System.Math.Abs(r.ToDouble()) < eps)
                    break;
                var mcloc = new MathContext(1 + ErrorToPrecision(r.ToDouble(), eps));
                res = res.Add(r.ToBigDecimal(mcloc));
            }
            return res.Round(mc);
        }
示例#16
0
        public static BigDecimal Zeta(int n, MathContext mc)
        {
            if (n <= 0)
                throw new NotSupportedException("Zeta at negative argument " + n + " not supported");
            if (n == 1)
                throw new ArithmeticException("Pole at zeta(1) ");

            if (n%2 == 0) {
                /* Even indices. Abramowitz-Stegun 23.2.16. Start with 2^(n-1)*B(n)/n!
                        */
                Rational b = Bernoulli.Default[n].Abs();
                b = b.Divide(Factorial.Default[n]);
                b = b.Multiply(BigInteger.One.ShiftLeft(n - 1));

                /* to be multiplied by pi^n. Absolute error in the result of pi^n is n times
                        * error in pi times pi^(n-1). Relative error is n*error(pi)/pi, requested by mc.
                        * Need one more digit in pi if n=10, two digits if n=100 etc, and add one extra digit.
                        */
                var mcpi = new MathContext(mc.Precision + (int) (System.Math.Log10(10.0*n)));
                BigDecimal piton = PiRound(mcpi).Pow(n, mc);
                return MultiplyRound(piton, b);
            }
            if (n == 3) {
                /* Broadhurst BBP <a href="http://arxiv.org/abs/math/9803067">arXiv:math/9803067</a>
                        * Error propagation: S31 is roughly 0.087, S33 roughly 0.131
                        */
                int[] a31 = {1, -7, -1, 10, -1, -7, 1, 0};
                int[] a33 = {1, 1, -1, -2, -1, 1, 1, 0};
                BigDecimal S31 = BroadhurstBbp(3, 1, a31, mc);
                BigDecimal S33 = BroadhurstBbp(3, 3, a33, mc);
                S31 = S31.Multiply(new BigDecimal(48));
                S33 = S33.Multiply(new BigDecimal(32));
                return S31.Add(S33).Divide(new BigDecimal(7), mc);
            }
            if (n == 5) {
                /* Broadhurst BBP <a href=http://arxiv.org/abs/math/9803067">arXiv:math/9803067</a>
                        * Error propagation: S51 is roughly -11.15, S53 roughly 22.165, S55 is roughly 0.031
                        * 9*2048*S51/6265 = -3.28. 7*2038*S53/61651= 5.07. 738*2048*S55/61651= 0.747.
                        * The result is of the order 1.03, so we add 2 digits to S51 and S52 and one digit to S55.
                        */
                int[] a51 = {31, -1614, -31, -6212, -31, -1614, 31, 74552};
                int[] a53 = {173, 284, -173, -457, -173, 284, 173, -111};
                int[] a55 = {1, 0, -1, -1, -1, 0, 1, 1};
                BigDecimal S51 = BroadhurstBbp(5, 1, a51, new MathContext(2 + mc.Precision));
                BigDecimal S53 = BroadhurstBbp(5, 3, a53, new MathContext(2 + mc.Precision));
                BigDecimal S55 = BroadhurstBbp(5, 5, a55, new MathContext(1 + mc.Precision));
                S51 = S51.Multiply(new BigDecimal(18432));
                S53 = S53.Multiply(new BigDecimal(14336));
                S55 = S55.Multiply(new BigDecimal(1511424));
                return S51.Add(S53).Subtract(S55).Divide(new BigDecimal(62651), mc);
            }
            /* Cohen et al Exp Math 1 (1) (1992) 25
                        */
            var betsum = new Rational();
            var bern = new Bernoulli();
            var fact = new Factorial();
            for (int npr = 0; npr <= (n + 1)/2; npr++) {
                Rational b = bern[2*npr].Multiply(bern[n + 1 - 2*npr]);
                b = b.Divide(fact[2*npr]).Divide(fact[n + 1 - 2*npr]);
                b = b.Multiply(1 - 2*npr);
                if (npr%2 == 0)
                    betsum = betsum.Add(b);
                else
                    betsum = betsum.Subtract(b);
            }
            betsum = betsum.Divide(n - 1);
            /* The first term, including the facor (2pi)^n, is essentially most
                        * of the result, near one. The second term below is roughly in the range 0.003 to 0.009.
                        * So the precision here is matching the precisionn requested by mc, and the precision
                        * requested for 2*pi is in absolute terms adjusted.
                        */
            var mcloc = new MathContext(2 + mc.Precision + (int) (System.Math.Log10(n)));
            BigDecimal ftrm = PiRound(mcloc).Multiply(new BigDecimal(2));
            ftrm = ftrm.Pow(n);
            ftrm = MultiplyRound(ftrm, betsum.ToBigDecimal(mcloc));
            var exps = new BigDecimal(0);

            /* the basic accuracy of the accumulated terms before multiplication with 2
                        */
            double eps = System.Math.Pow(10d, -mc.Precision);

            if (n%4 == 3) {
                /* since the argument n is at least 7 here, the drop
                                * of the terms is at rather constant pace at least 10^-3, for example
                                * 0.0018, 0.2e-7, 0.29e-11, 0.74e-15 etc for npr=1,2,3.... We want 2 times these terms
                                * fall below eps/10.
                                */
                int kmax = mc.Precision/3;
                eps /= kmax;
                /* need an error of eps for 2/(exp(2pi)-1) = 0.0037
                                * The absolute error is 4*exp(2pi)*err(pi)/(exp(2pi)-1)^2=0.0075*err(pi)
                                */
                BigDecimal exp2p = PiRound(new MathContext(3 + ErrorToPrecision(3.14, eps/0.0075)));
                exp2p = Exp(exp2p.Multiply(new BigDecimal(2)));
                BigDecimal c = exp2p.Subtract(BigDecimal.One);
                exps = DivideRound(1, c);
                for (int npr = 2; npr <= kmax; npr++) {
                    /* the error estimate above for npr=1 is the worst case of
                                        * the absolute error created by an error in 2pi. So we can
                                        * safely re-use the exp2p value computed above without
                                        * reassessment of its error.
                                        */
                    c = PowRound(exp2p, npr).Subtract(BigDecimal.One);
                    c = MultiplyRound(c, (BigInteger.ValueOf(npr)).Pow(n));
                    c = DivideRound(1, c);
                    exps = exps.Add(c);
                }
            } else {
                /* since the argument n is at least 9 here, the drop
                                * of the terms is at rather constant pace at least 10^-3, for example
                                * 0.0096, 0.5e-7, 0.3e-11, 0.6e-15 etc. We want these terms
                                * fall below eps/10.
                                */
                int kmax = (1 + mc.Precision)/3;
                eps /= kmax;
                /* need an error of eps for 2/(exp(2pi)-1)*(1+4*Pi/8/(1-exp(-2pi)) = 0.0096
                                * at k=7 or = 0.00766 at k=13 for example.
                                * The absolute error is 0.017*err(pi) at k=9, 0.013*err(pi) at k=13, 0.012 at k=17
                                */
                BigDecimal twop = PiRound(new MathContext(3 + ErrorToPrecision(3.14, eps/0.017)));
                twop = twop.Multiply(new BigDecimal(2));
                BigDecimal exp2p = Exp(twop);
                BigDecimal c = exp2p.Subtract(BigDecimal.One);
                exps = DivideRound(1, c);
                c = BigDecimal.One.Subtract(DivideRound(1, exp2p));
                c = DivideRound(twop, c).Multiply(new BigDecimal(2));
                c = DivideRound(c, n - 1).Add(BigDecimal.One);
                exps = MultiplyRound(exps, c);
                for (int npr = 2; npr <= kmax; npr++) {
                    c = PowRound(exp2p, npr).Subtract(BigDecimal.One);
                    c = MultiplyRound(c, (BigInteger.ValueOf(npr)).Pow(n));

                    BigDecimal d = DivideRound(1, exp2p.Pow(npr));
                    d = BigDecimal.One.Subtract(d);
                    d = DivideRound(twop, d).Multiply(new BigDecimal(2*npr));
                    d = DivideRound(d, n - 1).Add(BigDecimal.One);

                    d = DivideRound(d, c);

                    exps = exps.Add(d);
                }
            }
            exps = exps.Multiply(new BigDecimal(2));
            return ftrm.Subtract(exps, mc);
        }
示例#17
0
 public void Multiplying_the_sum_is_the_same_as_multiplying_each_one_and_then_adding_the_result(Rational x, Rational y, Rational z)
 {
     Assert.Equal((y + z) * x, y * x + z * x);
     Assert.Equal(Rational.Multiply(Rational.Add(y, z), x), Rational.Add(Rational.Multiply(y, x), Rational.Multiply(z, x)));
 }
 public void Case1()
 {
     Rational number1 = Rational.Add(Int64.MaxValue, Int32.MaxValue);
     Rational number2 = Math.Pow(Byte.MaxValue, 10);
     Rational result  = number1 & number2;
 }
示例#19
0
 public void Adding_the_opposite_returns_0(Rational x)
 {
     Assert.Equal(Rational.Zero, x + (-x));
     Assert.Equal(Rational.Zero, Rational.Add(x, Rational.Negate(x)));
 }
示例#20
0
 public void Adding_NaN_returns_NaN(Rational x)
 {
     Assert.Equal(Rational.NaN, x + Rational.NaN);
     Assert.Equal(Rational.NaN, Rational.Add(x, Rational.NaN));
 }
示例#21
0
 public void Adding_3_rationals_in_any_order_returns_the_same_result(Rational x, Rational y, Rational z)
 {
     Assert.Equal(x + y + z, x + (y + z));
     Assert.Equal(Rational.Add(Rational.Add(x, y), z), Rational.Add(x, Rational.Add(y, z)));
 }
示例#22
0
 public void AddFail(Rational r, int n, int d)
 {
     Assert.Throws <InvalidOperationException>(() => r.Add(null));
 }
示例#23
0
 public void Case1()
 {
     Rational number1 = Rational.Add(Int64.MaxValue, Int32.MaxValue);
     Rational number2 = Math.Pow(Byte.MaxValue, 10);
     Rational result  = Rational.BitwiseAnd(number1, number2);
 }
示例#24
0
 public void Adding_x_to_y_is_the_same_as_adding_y_to_x(Rational x, Rational y)
 {
     Assert.Equal(x + y, y + x);
     Assert.Equal(Rational.Add(x, y), Rational.Add(y, x));
 }