示例#1
0
    /// <summary>
    /// Calculate approximate position of the sun for a local date and time.
    /// </summary>
    /// <param name="lctHours">Local civil time, in hours.</param>
    /// <param name="lctMinutes">Local civil time, in minutes.</param>
    /// <param name="lctSeconds">Local civil time, in seconds.</param>
    /// <param name="localDay">Local day, day part.</param>
    /// <param name="localMonth">Local day, month part.</param>
    /// <param name="localYear">Local day, year part.</param>
    /// <param name="isDaylightSaving">Is daylight savings in effect?</param>
    /// <param name="zoneCorrection">Time zone correction, in hours.</param>
    /// <returns>
    /// <para>sunRAHour -- Right Ascension of Sun, hour part</para>
    /// <para>sunRAMin -- Right Ascension of Sun, minutes part</para>
    /// <para>sunRASec -- Right Ascension of Sun, seconds part</para>
    /// <para>sunDecDeg -- Declination of Sun, degrees part</para>
    /// <para>sunDecMin -- Declination of Sun, minutes part</para>
    /// <para>sunDecSec -- Declination of Sun, seconds part</para>
    /// </returns>
    public (double sunRAHour, double sunRAMin, double sunRASec, double sunDecDeg, double sunDecMin, double sunDecSec) ApproximatePositionOfSun(double lctHours, double lctMinutes, double lctSeconds, double localDay, int localMonth, int localYear, bool isDaylightSaving, int zoneCorrection)
    {
        var daylightSaving = (isDaylightSaving == true) ? 1 : 0;

        var greenwichDateDay   = PAMacros.LocalCivilTimeGreenwichDay(lctHours, lctMinutes, lctSeconds, daylightSaving, zoneCorrection, localDay, localMonth, localYear);
        var greenwichDateMonth = PAMacros.LocalCivilTimeGreenwichMonth(lctHours, lctMinutes, lctSeconds, daylightSaving, zoneCorrection, localDay, localMonth, localYear);
        var greenwichDateYear  = PAMacros.LocalCivilTimeGreenwichYear(lctHours, lctMinutes, lctSeconds, daylightSaving, zoneCorrection, localDay, localMonth, localYear);
        var utHours            = PAMacros.LocalCivilTimeToUniversalTime(lctHours, lctMinutes, lctSeconds, daylightSaving, zoneCorrection, localDay, localMonth, localYear);
        var utDays             = utHours / 24;
        var jdDays             = PAMacros.CivilDateToJulianDate(greenwichDateDay, greenwichDateMonth, greenwichDateYear) + utDays;
        var dDays   = jdDays - PAMacros.CivilDateToJulianDate(0, 1, 2010);
        var nDeg    = 360 * dDays / 365.242191;
        var mDeg1   = nDeg + PAMacros.SunELong(0, 1, 2010) - PAMacros.SunPeri(0, 1, 2010);
        var mDeg2   = mDeg1 - 360 * (mDeg1 / 360).Floor();
        var eCDeg   = 360 * PAMacros.SunEcc(0, 1, 2010) * mDeg2.ToRadians().Sine() / Math.PI;
        var lSDeg1  = nDeg + eCDeg + PAMacros.SunELong(0, 1, 2010);
        var lSDeg2  = lSDeg1 - 360 * (lSDeg1 / 360).Floor();
        var raDeg   = PAMacros.EcRA(lSDeg2, 0, 0, 0, 0, 0, greenwichDateDay, greenwichDateMonth, greenwichDateYear);
        var raHours = PAMacros.DecimalDegreesToDegreeHours(raDeg);
        var decDeg  = PAMacros.EcDec(lSDeg2, 0, 0, 0, 0, 0, greenwichDateDay, greenwichDateMonth, greenwichDateYear);

        var sunRAHour = PAMacros.DecimalHoursHour(raHours);
        var sunRAMin  = PAMacros.DecimalHoursMinute(raHours);
        var sunRASec  = PAMacros.DecimalHoursSecond(raHours);
        var sunDecDeg = PAMacros.DecimalDegreesDegrees(decDeg);
        var sunDecMin = PAMacros.DecimalDegreesMinutes(decDeg);
        var sunDecSec = PAMacros.DecimalDegreesSeconds(decDeg);

        return(sunRAHour, sunRAMin, sunRASec, sunDecDeg, sunDecMin, sunDecSec);
    }
示例#2
0
    /// <summary>
    /// Calculate precise position of the Moon.
    /// </summary>
    /// <returns>
    /// <para>moonRAHour -- Right ascension of Moon (hour part)</para>
    /// <para>moonRAMin -- Right ascension of Moon (minutes part)</para>
    /// <para>moonRASec -- Right ascension of Moon (seconds part)</para>
    /// <para>moonDecDeg -- Declination of Moon (degrees part)</para>
    /// <para>moonDecMin -- Declination of Moon (minutes part)</para>
    /// <para>moonDecSec -- Declination of Moon (seconds part)</para>
    /// <para>earthMoonDistKM -- Distance from Earth to Moon (km)</para>
    /// <para>moonHorParallaxDeg -- Horizontal parallax of Moon (degrees)</para>
    /// </returns>
    public (double moonRAHour, double moonRAMin, double moonRASec, double moonDecDeg, double moonDecMin, double moonDecSec, double earthMoonDistKM, double moonHorParallaxDeg) PrecisePositionOfMoon(double lctHour, double lctMin, double lctSec, bool isDaylightSaving, int zoneCorrectionHours, double localDateDay, int localDateMonth, int localDateYear)
    {
        var daylightSaving = (isDaylightSaving) ? 1 : 0;

        var gdateDay   = PAMacros.LocalCivilTimeGreenwichDay(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var gdateMonth = PAMacros.LocalCivilTimeGreenwichMonth(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var gdateYear  = PAMacros.LocalCivilTimeGreenwichYear(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);

        var moonResult = PAMacros.MoonLongLatHP(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);

        var nutationInLongitudeDeg = PAMacros.NutatLong(gdateDay, gdateMonth, gdateYear);
        var correctedLongDeg       = moonResult.moonLongDeg + nutationInLongitudeDeg;
        var earthMoonDistanceKM    = 6378.14 / moonResult.moonHorPara.ToRadians().Sine();
        var moonRAHours1           = PAMacros.DecimalDegreesToDegreeHours(PAMacros.EcRA(correctedLongDeg, 0, 0, moonResult.moonLatDeg, 0, 0, gdateDay, gdateMonth, gdateYear));
        var moonDecDeg1            = PAMacros.EcDec(correctedLongDeg, 0, 0, moonResult.moonLatDeg, 0, 0, gdateDay, gdateMonth, gdateYear);

        var moonRAHour         = PAMacros.DecimalHoursHour(moonRAHours1);
        var moonRAMin          = PAMacros.DecimalHoursMinute(moonRAHours1);
        var moonRASec          = PAMacros.DecimalHoursSecond(moonRAHours1);
        var moonDecDeg         = PAMacros.DecimalDegreesDegrees(moonDecDeg1);
        var moonDecMin         = PAMacros.DecimalDegreesMinutes(moonDecDeg1);
        var moonDecSec         = PAMacros.DecimalDegreesSeconds(moonDecDeg1);
        var earthMoonDistKM    = Math.Round(earthMoonDistanceKM, 0);
        var moonHorParallaxDeg = Math.Round(moonResult.moonHorPara, 6);

        return(moonRAHour, moonRAMin, moonRASec, moonDecDeg, moonDecMin, moonDecSec, earthMoonDistKM, moonHorParallaxDeg);
    }
示例#3
0
    /// <summary>
    /// Calculate Moon phase and position angle of bright limb.
    /// </summary>
    /// <returns>
    /// <para>moonPhase -- Phase of Moon, between 0 and 1, where 0 is New and 1 is Full.</para>
    /// <para>paBrightLimbDeg -- Position angle of the bright limb (degrees)</para>
    /// </returns>
    public (double moonPhase, double paBrightLimbDeg) MoonPhase(double lctHour, double lctMin, double lctSec, bool isDaylightSaving, int zoneCorrectionHours, double localDateDay, int localDateMonth, int localDateYear, PAAccuracyLevel accuracyLevel)
    {
        var daylightSaving = (isDaylightSaving) ? 1 : 0;

        var gdateDay   = PAMacros.LocalCivilTimeGreenwichDay(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var gdateMonth = PAMacros.LocalCivilTimeGreenwichMonth(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var gdateYear  = PAMacros.LocalCivilTimeGreenwichYear(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);

        var sunLongDeg = PAMacros.SunLong(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var moonResult = PAMacros.MoonLongLatHP(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var dRad       = (moonResult.moonLongDeg - sunLongDeg).ToRadians();

        var moonPhase1 = (accuracyLevel == PAAccuracyLevel.Precise) ? PAMacros.MoonPhase(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear) : (1.0 - (dRad).Cosine()) / 2.0;

        var sunRARad   = (PAMacros.EcRA(sunLongDeg, 0, 0, 0, 0, 0, gdateDay, gdateMonth, gdateYear)).ToRadians();
        var moonRARad  = (PAMacros.EcRA(moonResult.moonLongDeg, 0, 0, moonResult.moonLatDeg, 0, 0, gdateDay, gdateMonth, gdateYear)).ToRadians();
        var sunDecRad  = (PAMacros.EcDec(sunLongDeg, 0, 0, 0, 0, 0, gdateDay, gdateMonth, gdateYear)).ToRadians();
        var moonDecRad = (PAMacros.EcDec(moonResult.moonLongDeg, 0, 0, moonResult.moonLatDeg, 0, 0, gdateDay, gdateMonth, gdateYear)).ToRadians();

        var y = (sunDecRad).Cosine() * (sunRARad - moonRARad).Sine();
        var x = (moonDecRad).Cosine() * (sunDecRad).Sine() - (moonDecRad).Sine() * (sunDecRad).Cosine() * (sunRARad - moonRARad).Cosine();

        var chiDeg = PAMacros.Degrees(y.AngleTangent2(x));

        var moonPhase       = Math.Round(moonPhase1, 2);
        var paBrightLimbDeg = Math.Round(chiDeg, 2);

        return(moonPhase, paBrightLimbDeg);
    }
    /// <summary>
    /// Calculate position of a parabolic comet.
    /// </summary>
    /// <returns>
    /// cometRAHour -- Right ascension of comet (hour part)
    /// cometRAMin -- Right ascension of comet (minutes part)
    /// cometRASec -- Right ascension of comet (seconds part)
    /// cometDecDeg -- Declination of comet (degrees part)
    /// cometDecMin -- Declination of comet (minutes part)
    /// cometDecSec -- Declination of comet (seconds part)
    /// cometDistEarth -- Comet's distance from Earth (AU)
    /// </returns>
    /// <returns></returns>
    public (double cometRAHour, double cometRAMin, double cometRASec, double cometDecDeg, double cometDecMin, double cometDecSec, double cometDistEarth) PositionOfParabolicComet(double lctHour, double lctMin, double lctSec, bool isDaylightSaving, int zoneCorrectionHours, double localDateDay, int localDateMonth, int localDateYear, string cometName)
    {
        var daylightSaving = (isDaylightSaving) ? 1 : 0;

        var greenwichDateDay   = PAMacros.LocalCivilTimeGreenwichDay(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var greenwichDateMonth = PAMacros.LocalCivilTimeGreenwichMonth(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var greenwichDateYear  = PAMacros.LocalCivilTimeGreenwichYear(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);

        var cometInfo = CometInfoParabolic.GetCometParabolicInfo(cometName);

        var perihelionEpochDay   = cometInfo.EpochPeriDay;
        var perihelionEpochMonth = cometInfo.EpochPeriMonth;
        var perihelionEpochYear  = cometInfo.EpochPeriYear;
        var qAU            = cometInfo.PeriDist;
        var inclinationDeg = cometInfo.Incl;
        var perihelionDeg  = cometInfo.ArgPeri;
        var nodeDeg        = cometInfo.Node;

        var cometLongLatDist = PAMacros.PCometLongLatDist(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear, perihelionEpochDay, perihelionEpochMonth, perihelionEpochYear, qAU, inclinationDeg, perihelionDeg, nodeDeg);

        var cometRAHours = PAMacros.DecimalDegreesToDegreeHours(PAMacros.EcRA(cometLongLatDist.cometLongDeg, 0, 0, cometLongLatDist.cometLatDeg, 0, 0, greenwichDateDay, greenwichDateMonth, greenwichDateYear));
        var cometDecDeg1 = PAMacros.EcDec(cometLongLatDist.cometLongDeg, 0, 0, cometLongLatDist.cometLatDeg, 0, 0, greenwichDateDay, greenwichDateMonth, greenwichDateYear);

        var cometRAHour    = PAMacros.DecimalHoursHour(cometRAHours);
        var cometRAMin     = PAMacros.DecimalHoursMinute(cometRAHours);
        var cometRASec     = PAMacros.DecimalHoursSecond(cometRAHours);
        var cometDecDeg    = PAMacros.DecimalDegreesDegrees(cometDecDeg1);
        var cometDecMin    = PAMacros.DecimalDegreesMinutes(cometDecDeg1);
        var cometDecSec    = PAMacros.DecimalDegreesSeconds(cometDecDeg1);
        var cometDistEarth = Math.Round(cometLongLatDist.cometDistAU, 2);

        return(cometRAHour, cometRAMin, cometRASec, cometDecDeg, cometDecMin, cometDecSec, cometDistEarth);
    }
示例#5
0
    /// <summary>
    /// Calculate solar elongation for a celestial body.
    /// </summary>
    /// <remarks>
    /// Solar elongation is the angle between the lines of sight from the Earth to the Sun and from the Earth to the celestial body.
    /// </remarks>
    /// <returns>solarElongationDeg -- Solar elongation, in degrees</returns>
    public double SolarElongation(double raHour, double raMin, double raSec, double decDeg, double decMin, double decSec, double gwdateDay, int gwdateMonth, int gwdateYear)
    {
        var sunLongitudeDeg    = PAMacros.SunLong(0, 0, 0, 0, 0, gwdateDay, gwdateMonth, gwdateYear);
        var sunRAHours         = PAMacros.DecimalDegreesToDegreeHours(PAMacros.EcRA(sunLongitudeDeg, 0, 0, 0, 0, 0, gwdateDay, gwdateMonth, gwdateYear));
        var sunDecDeg          = PAMacros.EcDec(sunLongitudeDeg, 0, 0, 0, 0, 0, gwdateDay, gwdateMonth, gwdateYear);
        var solarElongationDeg = PAMacros.Angle(sunRAHours, 0, 0, sunDecDeg, 0, 0, raHour, raMin, raSec, decDeg, decMin, decSec, PAAngleMeasure.Hours);

        return(Math.Round(solarElongationDeg, 2));
    }
示例#6
0
    /// <summary>
    /// Calculate approximate position of a planet.
    /// </summary>
    public (double planetRAHour, double planetRAMin, double planetRASec, double planetDecDeg, double planetDecMin, double planetDecSec) ApproximatePositionOfPlanet(double lctHour, double lctMin, double lctSec, bool isDaylightSaving, int zoneCorrectionHours, double localDateDay, int localDateMonth, int localDateYear, string planetName)
    {
        var daylightSaving = (isDaylightSaving) ? 1 : 0;

        var planetInfo = PlanetInfo.GetPlanetInfo(planetName);

        var gdateDay   = PAMacros.LocalCivilTimeGreenwichDay(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var gdateMonth = PAMacros.LocalCivilTimeGreenwichMonth(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var gdateYear  = PAMacros.LocalCivilTimeGreenwichYear(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);

        var utHours = PAMacros.LocalCivilTimeToUniversalTime(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var dDays   = PAMacros.CivilDateToJulianDate(gdateDay + (utHours / 24), gdateMonth, gdateYear) - PAMacros.CivilDateToJulianDate(0, 1, 2010);
        var npDeg1  = 360 * dDays / (365.242191 * planetInfo.tp_PeriodOrbit);
        var npDeg2  = npDeg1 - 360 * (npDeg1 / 360).Floor();
        var mpDeg   = npDeg2 + planetInfo.long_LongitudeEpoch - planetInfo.peri_LongitudePerihelion;
        var lpDeg1  = npDeg2 + (360 * planetInfo.ecc_EccentricityOrbit * mpDeg.ToRadians().Sine() / Math.PI) + planetInfo.long_LongitudeEpoch;
        var lpDeg2  = lpDeg1 - 360 * (lpDeg1 / 360).Floor();
        var planetTrueAnomalyDeg = lpDeg2 - planetInfo.peri_LongitudePerihelion;
        var rAU = planetInfo.axis_AxisOrbit * (1 - Math.Pow(planetInfo.ecc_EccentricityOrbit, 2)) / (1 + planetInfo.ecc_EccentricityOrbit * planetTrueAnomalyDeg.ToRadians().Cosine());

        var earthInfo = PlanetInfo.GetPlanetInfo("Earth");

        var neDeg1 = 360 * dDays / (365.242191 * earthInfo.tp_PeriodOrbit);
        var neDeg2 = neDeg1 - 360 * (neDeg1 / 360).Floor();
        var meDeg  = neDeg2 + earthInfo.long_LongitudeEpoch - earthInfo.peri_LongitudePerihelion;
        var leDeg1 = neDeg2 + earthInfo.long_LongitudeEpoch + 360 * earthInfo.ecc_EccentricityOrbit * meDeg.ToRadians().Sine() / Math.PI;
        var leDeg2 = leDeg1 - 360 * (leDeg1 / 360).Floor();
        var earthTrueAnomalyDeg = leDeg2 - earthInfo.peri_LongitudePerihelion;
        var rAU2       = earthInfo.axis_AxisOrbit * (1 - Math.Pow(earthInfo.ecc_EccentricityOrbit, 2)) / (1 + earthInfo.ecc_EccentricityOrbit * earthTrueAnomalyDeg.ToRadians().Cosine());
        var lpNodeRad  = (lpDeg2 - planetInfo.node_LongitudeAscendingNode).ToRadians();
        var psiRad     = ((lpNodeRad).Sine() * planetInfo.incl_OrbitalInclination.ToRadians().Sine()).ASine();
        var y          = lpNodeRad.Sine() * planetInfo.incl_OrbitalInclination.ToRadians().Cosine();
        var x          = lpNodeRad.Cosine();
        var ldDeg      = PAMacros.Degrees(y.AngleTangent2(x)) + planetInfo.node_LongitudeAscendingNode;
        var rdAU       = rAU * psiRad.Cosine();
        var leLdRad    = (leDeg2 - ldDeg).ToRadians();
        var atan2Type1 = (rdAU * leLdRad.Sine()).AngleTangent2(rAU2 - rdAU * leLdRad.Cosine());
        var atan2Type2 = (rAU2 * (-leLdRad).Sine()).AngleTangent2(rdAU - rAU2 * leLdRad.Cosine());
        var aRad       = (rdAU < 1) ? atan2Type1 : atan2Type2;
        var lamdaDeg1  = (rdAU < 1) ? 180 + leDeg2 + PAMacros.Degrees(aRad) : PAMacros.Degrees(aRad) + ldDeg;
        var lamdaDeg2  = lamdaDeg1 - 360 * (lamdaDeg1 / 360).Floor();
        var betaDeg    = PAMacros.Degrees((rdAU * psiRad.Tangent() * ((lamdaDeg2 - ldDeg).ToRadians()).Sine() / (rAU2 * (-leLdRad).Sine())).AngleTangent());
        var raHours    = PAMacros.DecimalDegreesToDegreeHours(PAMacros.EcRA(lamdaDeg2, 0, 0, betaDeg, 0, 0, gdateDay, gdateMonth, gdateYear));
        var decDeg     = PAMacros.EcDec(lamdaDeg2, 0, 0, betaDeg, 0, 0, gdateDay, gdateMonth, gdateYear);

        var planetRAHour = PAMacros.DecimalHoursHour(raHours);
        var planetRAMin  = PAMacros.DecimalHoursMinute(raHours);
        var planetRASec  = PAMacros.DecimalHoursSecond(raHours);
        var planetDecDeg = PAMacros.DecimalDegreesDegrees(decDeg);
        var planetDecMin = PAMacros.DecimalDegreesMinutes(decDeg);
        var planetDecSec = PAMacros.DecimalDegreesSeconds(decDeg);

        return(planetRAHour, planetRAMin, planetRASec, planetDecDeg, planetDecMin, planetDecSec);
    }
示例#7
0
    /// <summary>
    /// Calculate the equation of time. (The difference between the real Sun time and the mean Sun time.)
    /// </summary>
    /// <param name="gwdateDay">Greenwich date (day part)</param>
    /// <param name="gwdateMonth">Greenwich date (month part)</param>
    /// <param name="gwdateYear">Greenwich date (year part)</param>
    /// <returns>
    /// <para>equation_of_time_min -- equation of time (minute part)</para>
    /// <para>equation_of_time_sec -- equation of time (seconds part)</para>
    /// </returns>
    public (double equationOfTimeMin, double equationOfTimeSec) EquationOfTime(double gwdateDay, int gwdateMonth, int gwdateYear)
    {
        var sunLongitudeDeg     = PAMacros.SunLong(12, 0, 0, 0, 0, gwdateDay, gwdateMonth, gwdateYear);
        var sunRAHours          = PAMacros.DecimalDegreesToDegreeHours(PAMacros.EcRA(sunLongitudeDeg, 0, 0, 0, 0, 0, gwdateDay, gwdateMonth, gwdateYear));
        var equivalentUTHours   = PAMacros.GreenwichSiderealTimeToUniversalTime(sunRAHours, 0, 0, gwdateDay, gwdateMonth, gwdateYear);
        var equationOfTimeHours = equivalentUTHours - 12;

        var equationOfTimeMin = PAMacros.DecimalHoursMinute(equationOfTimeHours);
        var equationOfTimeSec = PAMacros.DecimalHoursSecond(equationOfTimeHours);

        return(equationOfTimeMin, equationOfTimeSec);
    }
示例#8
0
    /// <summary>
    /// Calculate approximate position of the Moon.
    /// </summary>
    /// <returns>
    /// <para>moon_ra_hour -- Right ascension of Moon (hour part)</para>
    /// <para>moon_ra_min -- Right ascension of Moon (minutes part)</para>
    /// <para>moon_ra_sec -- Right ascension of Moon (seconds part)</para>
    /// <para>moon_dec_deg -- Declination of Moon (degrees part)</para>
    /// <para>moon_dec_min -- Declination of Moon (minutes part)</para>
    /// <para>moon_dec_sec -- Declination of Moon (seconds part)</para>
    /// </returns>
    public (double moonRAHour, double moonRAMin, double moonRASec, double moonDecDeg, double moonDecMin, double moonDecSec) ApproximatePositionOfMoon(double lctHour, double lctMin, double lctSec, bool isDaylightSaving, int zoneCorrectionHours, double localDateDay, int localDateMonth, int localDateYear)
    {
        var daylightSaving = (isDaylightSaving) ? 1 : 0;

        var l0 = 91.9293359879052;
        var p0 = 130.143076320618;
        var n0 = 291.682546643194;
        var i  = 5.145396;

        var gdateDay   = PAMacros.LocalCivilTimeGreenwichDay(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var gdateMonth = PAMacros.LocalCivilTimeGreenwichMonth(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var gdateYear  = PAMacros.LocalCivilTimeGreenwichYear(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);

        var utHours           = PAMacros.LocalCivilTimeToUniversalTime(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var dDays             = PAMacros.CivilDateToJulianDate(gdateDay, gdateMonth, gdateYear) - PAMacros.CivilDateToJulianDate(0.0, 1, 2010) + utHours / 24;
        var sunLongDeg        = PAMacros.SunLong(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var sunMeanAnomalyRad = PAMacros.SunMeanAnomaly(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var lmDeg             = PAMacros.UnwindDeg(13.1763966 * dDays + l0);
        var mmDeg             = PAMacros.UnwindDeg(lmDeg - 0.1114041 * dDays - p0);
        var nDeg   = PAMacros.UnwindDeg(n0 - (0.0529539 * dDays));
        var evDeg  = 1.2739 * ((2.0 * (lmDeg - sunLongDeg) - mmDeg).ToRadians()).Sine();
        var aeDeg  = 0.1858 * (sunMeanAnomalyRad).Sine();
        var a3Deg  = 0.37 * (sunMeanAnomalyRad).Sine();
        var mmdDeg = mmDeg + evDeg - aeDeg - a3Deg;
        var ecDeg  = 6.2886 * mmdDeg.ToRadians().Sine();
        var a4Deg  = 0.214 * (2.0 * (mmdDeg).ToRadians()).Sine();
        var ldDeg  = lmDeg + evDeg + ecDeg - aeDeg + a4Deg;
        var vDeg   = 0.6583 * (2.0 * (ldDeg - sunLongDeg).ToRadians()).Sine();
        var lddDeg = ldDeg + vDeg;
        var ndDeg  = nDeg - 0.16 * (sunMeanAnomalyRad).Sine();
        var y      = ((lddDeg - ndDeg).ToRadians()).Sine() * i.ToRadians().Cosine();
        var x      = (lddDeg - ndDeg).ToRadians().Cosine();

        var moonLongDeg  = PAMacros.UnwindDeg(PAMacros.Degrees(y.AngleTangent2(x)) + ndDeg);
        var moonLatDeg   = PAMacros.Degrees(((lddDeg - ndDeg).ToRadians().Sine() * i.ToRadians().Sine()).ASine());
        var moonRAHours1 = PAMacros.DecimalDegreesToDegreeHours(PAMacros.EcRA(moonLongDeg, 0, 0, moonLatDeg, 0, 0, gdateDay, gdateMonth, gdateYear));
        var moonDecDeg1  = PAMacros.EcDec(moonLongDeg, 0, 0, moonLatDeg, 0, 0, gdateDay, gdateMonth, gdateYear);

        var moonRAHour = PAMacros.DecimalHoursHour(moonRAHours1);
        var moonRAMin  = PAMacros.DecimalHoursMinute(moonRAHours1);
        var moonRASec  = PAMacros.DecimalHoursSecond(moonRAHours1);
        var moonDecDeg = PAMacros.DecimalDegreesDegrees(moonDecDeg1);
        var moonDecMin = PAMacros.DecimalDegreesMinutes(moonDecDeg1);
        var moonDecSec = PAMacros.DecimalDegreesSeconds(moonDecDeg1);

        return(moonRAHour, moonRAMin, moonRASec, moonDecDeg, moonDecMin, moonDecSec);
    }
    /// <summary>
    /// Calculate position of an elliptical comet.
    /// </summary>
    /// <returns>
    /// cometRAHour -- Right ascension of comet (hour part)
    /// cometRAMin -- Right ascension of comet (minutes part)
    /// cometDecDeg -- Declination of comet (degrees part)
    /// cometDecMin -- Declination of comet (minutes part)
    /// cometDistEarth -- Comet's distance from Earth (AU)
    /// </returns>
    public (double cometRAHour, double cometRAMin, double cometDecDeg, double cometDecMin, double cometDistEarth) PositionOfEllipticalComet(double lctHour, double lctMin, double lctSec, bool isDaylightSaving, int zoneCorrectionHours, double localDateDay, int localDateMonth, int localDateYear, string cometName)
    {
        var daylightSaving = (isDaylightSaving) ? 1 : 0;

        var greenwichDateDay   = PAMacros.LocalCivilTimeGreenwichDay(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var greenwichDateMonth = PAMacros.LocalCivilTimeGreenwichMonth(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var greenwichDateYear  = PAMacros.LocalCivilTimeGreenwichYear(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);

        var cometInfo = CometInfoElliptical.GetCometEllipticalInfo(cometName);

        var timeSinceEpochYears = (PAMacros.CivilDateToJulianDate(greenwichDateDay, greenwichDateMonth, greenwichDateYear) - PAMacros.CivilDateToJulianDate(0.0, 1, greenwichDateYear)) / 365.242191 + greenwichDateYear - cometInfo.epoch_EpochOfPerihelion;
        var mcDeg          = 360 * timeSinceEpochYears / cometInfo.period_PeriodOfOrbit;
        var mcRad          = (mcDeg - 360 * (mcDeg / 360).Floor()).ToRadians();
        var eccentricity   = cometInfo.ecc_EccentricityOfOrbit;
        var trueAnomalyDeg = PAMacros.Degrees(PAMacros.TrueAnomaly(mcRad, eccentricity));
        var lcDeg          = trueAnomalyDeg + cometInfo.peri_LongitudeOfPerihelion;
        var rAU            = cometInfo.axis_SemiMajorAxisOfOrbit * (1 - eccentricity * eccentricity) / (1 + eccentricity * ((trueAnomalyDeg).ToRadians()).Cosine());
        var lcNodeRad      = (lcDeg - cometInfo.node_LongitudeOfAscendingNode).ToRadians();
        var psiRad         = ((lcNodeRad).Sine() * ((cometInfo.incl_InclinationOfOrbit).ToRadians()).Sine()).ASine();

        var y = (lcNodeRad).Sine() * ((cometInfo.incl_InclinationOfOrbit).ToRadians()).Cosine();
        var x = (lcNodeRad).Cosine();

        var ldDeg = PAMacros.Degrees(y.AngleTangent2(x)) + cometInfo.node_LongitudeOfAscendingNode;
        var rdAU  = rAU * (psiRad).Cosine();

        var earthLongitudeLeDeg = PAMacros.SunLong(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear) + 180.0;
        var earthRadiusVectorAU = PAMacros.SunDist(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);

        var leLdRad = (earthLongitudeLeDeg - ldDeg).ToRadians();
        var aRad    = (rdAU < earthRadiusVectorAU) ? (rdAU * (leLdRad).Sine()).AngleTangent2(earthRadiusVectorAU - rdAU * (leLdRad).Cosine()) : (earthRadiusVectorAU * (-leLdRad).Sine()).AngleTangent2(rdAU - earthRadiusVectorAU * (leLdRad).Cosine());

        var cometLongDeg1   = (rdAU < earthRadiusVectorAU) ? 180.0 + earthLongitudeLeDeg + PAMacros.Degrees(aRad) : PAMacros.Degrees(aRad) + ldDeg;
        var cometLongDeg    = cometLongDeg1 - 360 * (cometLongDeg1 / 360).Floor();
        var cometLatDeg     = PAMacros.Degrees((rdAU * (psiRad).Tangent() * ((cometLongDeg1 - ldDeg).ToRadians()).Sine() / (earthRadiusVectorAU * (-leLdRad).Sine())).AngleTangent());
        var cometRAHours1   = PAMacros.DecimalDegreesToDegreeHours(PAMacros.EcRA(cometLongDeg, 0, 0, cometLatDeg, 0, 0, greenwichDateDay, greenwichDateMonth, greenwichDateYear));
        var cometDecDeg1    = PAMacros.EcDec(cometLongDeg, 0, 0, cometLatDeg, 0, 0, greenwichDateDay, greenwichDateMonth, greenwichDateYear);
        var cometDistanceAU = (Math.Pow(earthRadiusVectorAU, 2) + Math.Pow(rAU, 2) - 2.0 * earthRadiusVectorAU * rAU * ((lcDeg - earthLongitudeLeDeg).ToRadians()).Cosine() * (psiRad).Cosine()).SquareRoot();

        var cometRAHour    = PAMacros.DecimalHoursHour(cometRAHours1 + 0.008333);
        var cometRAMin     = PAMacros.DecimalHoursMinute(cometRAHours1 + 0.008333);
        var cometDecDeg    = PAMacros.DecimalDegreesDegrees(cometDecDeg1 + 0.008333);
        var cometDecMin    = PAMacros.DecimalDegreesMinutes(cometDecDeg1 + 0.008333);
        var cometDistEarth = Math.Round(cometDistanceAU, 2);

        return(cometRAHour, cometRAMin, cometDecDeg, cometDecMin, cometDistEarth);
    }
示例#10
0
    /// <summary>
    /// Calculate precise position of a planet.
    /// </summary>
    public (double planetRAHour, double planetRAMin, double planetRASec, double planetDecDeg, double planetDecMin, double planetDecSec) PrecisePositionOfPlanet(double lctHour, double lctMin, double lctSec, bool isDaylightSaving, int zoneCorrectionHours, double localDateDay, int localDateMonth, int localDateYear, string planetName)
    {
        var daylightSaving = (isDaylightSaving) ? 1 : 0;

        var coordinateResults = PAMacros.PlanetCoordinates(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear, planetName);

        var planetRAHours = PAMacros.DecimalDegreesToDegreeHours(PAMacros.EcRA(coordinateResults.planetLongitude, 0, 0, coordinateResults.planetLatitude, 0, 0, localDateDay, localDateMonth, localDateYear));
        var planetDecDeg1 = PAMacros.EcDec(coordinateResults.planetLongitude, 0, 0, coordinateResults.planetLatitude, 0, 0, localDateDay, localDateMonth, localDateYear);

        var planetRAHour = PAMacros.DecimalHoursHour(planetRAHours);
        var planetRAMin  = PAMacros.DecimalHoursMinute(planetRAHours);
        var planetRASec  = PAMacros.DecimalHoursSecond(planetRAHours);
        var planetDecDeg = PAMacros.DecimalDegreesDegrees(planetDecDeg1);
        var planetDecMin = PAMacros.DecimalDegreesMinutes(planetDecDeg1);
        var planetDecSec = PAMacros.DecimalDegreesSeconds(planetDecDeg1);

        return(planetRAHour, planetRAMin, planetRASec, planetDecDeg, planetDecMin, planetDecSec);
    }
示例#11
0
    /// <summary>
    /// Calculate precise position of the sun for a local date and time.
    /// </summary>
    public (double sunRAHour, double sunRAMin, double sunRASec, double sunDecDeg, double sunDecMin, double sunDecSec) PrecisePositionOfSun(double lctHours, double lctMinutes, double lctSeconds, double localDay, int localMonth, int localYear, bool isDaylightSaving, int zoneCorrection)
    {
        var daylightSaving = (isDaylightSaving == true) ? 1 : 0;

        var gDay   = PAMacros.LocalCivilTimeGreenwichDay(lctHours, lctMinutes, lctSeconds, daylightSaving, zoneCorrection, localDay, localMonth, localYear);
        var gMonth = PAMacros.LocalCivilTimeGreenwichMonth(lctHours, lctMinutes, lctSeconds, daylightSaving, zoneCorrection, localDay, localMonth, localYear);
        var gYear  = PAMacros.LocalCivilTimeGreenwichYear(lctHours, lctMinutes, lctSeconds, daylightSaving, zoneCorrection, localDay, localMonth, localYear);
        var sunEclipticLongitudeDeg = PAMacros.SunLong(lctHours, lctMinutes, lctSeconds, daylightSaving, zoneCorrection, localDay, localMonth, localYear);
        var raDeg   = PAMacros.EcRA(sunEclipticLongitudeDeg, 0, 0, 0, 0, 0, gDay, gMonth, gYear);
        var raHours = PAMacros.DecimalDegreesToDegreeHours(raDeg);
        var decDeg  = PAMacros.EcDec(sunEclipticLongitudeDeg, 0, 0, 0, 0, 0, gDay, gMonth, gYear);

        var sunRAHour = PAMacros.DecimalHoursHour(raHours);
        var sunRAMin  = PAMacros.DecimalHoursMinute(raHours);
        var sunRASec  = PAMacros.DecimalHoursSecond(raHours);
        var sunDecDeg = PAMacros.DecimalDegreesDegrees(decDeg);
        var sunDecMin = PAMacros.DecimalDegreesMinutes(decDeg);
        var sunDecSec = PAMacros.DecimalDegreesSeconds(decDeg);

        return(sunRAHour, sunRAMin, sunRASec, sunDecDeg, sunDecMin, sunDecSec);
    }
示例#12
0
    /// <summary>
    /// Calculate several visual aspects of a planet.
    /// </summary>
    /// <returns>
    /// <para>distance_au -- Planet's distance from Earth, in AU.</para>
    /// <para>ang_dia_arcsec -- Angular diameter of the planet.</para>
    /// <para>phase -- Illuminated fraction of the planet.</para>
    /// <para>light_time_hour -- Light travel time from planet to Earth, hour part.</para>
    /// <para>light_time_minutes -- Light travel time from planet to Earth, minutes part.</para>
    /// <para>light_time_seconds -- Light travel time from planet to Earth, seconds part.</para>
    /// <para>pos_angle_bright_limb_deg -- Position-angle of the bright limb.</para>
    /// <para>approximate_magnitude -- Apparent brightness of the planet.</para>
    /// </returns>
    public (double distanceAU, double angDiaArcsec, double phase, double lightTimeHour, double lightTimeMinutes, double lightTimeSeconds, double posAngleBrightLimbDeg, double approximateMagnitude) VisualAspectsOfAPlanet(double lctHour, double lctMin, double lctSec, bool isDaylightSaving, int zoneCorrectionHours, double localDateDay, int localDateMonth, int localDateYear, string planetName)
    {
        var daylightSaving = (isDaylightSaving) ? 1 : 0;

        var greenwichDateDay   = PAMacros.LocalCivilTimeGreenwichDay(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var greenwichDateMonth = PAMacros.LocalCivilTimeGreenwichMonth(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var greenwichDateYear  = PAMacros.LocalCivilTimeGreenwichYear(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);

        var planetCoordInfo = PAMacros.PlanetCoordinates(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear, planetName);

        var planetRARad  = (PAMacros.EcRA(planetCoordInfo.planetLongitude, 0, 0, planetCoordInfo.planetLatitude, 0, 0, localDateDay, localDateMonth, localDateYear)).ToRadians();
        var planetDecRad = (PAMacros.EcDec(planetCoordInfo.planetLongitude, 0, 0, planetCoordInfo.planetLatitude, 0, 0, localDateDay, localDateMonth, localDateYear)).ToRadians();

        var lightTravelTimeHours  = planetCoordInfo.planetDistanceAU * 0.1386;
        var planetInfo            = PlanetInfo.GetPlanetInfo(planetName);
        var angularDiameterArcsec = planetInfo.theta0_AngularDiameter / planetCoordInfo.planetDistanceAU;
        var phase1 = 0.5 * (1.0 + ((planetCoordInfo.planetLongitude - planetCoordInfo.planetHLong1).ToRadians()).Cosine());

        var sunEclLongDeg = PAMacros.SunLong(lctHour, lctMin, lctSec, daylightSaving, zoneCorrectionHours, localDateDay, localDateMonth, localDateYear);
        var sunRARad      = (PAMacros.EcRA(sunEclLongDeg, 0, 0, 0, 0, 0, greenwichDateDay, greenwichDateMonth, greenwichDateYear)).ToRadians();
        var sunDecRad     = (PAMacros.EcDec(sunEclLongDeg, 0, 0, 0, 0, 0, greenwichDateDay, greenwichDateMonth, greenwichDateYear)).ToRadians();

        var y = (sunDecRad).Cosine() * (sunRARad - planetRARad).Sine();
        var x = (planetDecRad).Cosine() * (sunDecRad).Sine() - (planetDecRad).Sine() * (sunDecRad).Cosine() * (sunRARad - planetRARad).Cosine();

        var chiDeg                = PAMacros.Degrees(y.AngleTangent2(x));
        var radiusVectorAU        = planetCoordInfo.planetRVect;
        var approximateMagnitude1 = 5.0 * (radiusVectorAU * planetCoordInfo.planetDistanceAU / (phase1).SquareRoot()).Log10() + planetInfo.v0_VisualMagnitude;

        var distanceAU            = Math.Round(planetCoordInfo.planetDistanceAU, 5);
        var angDiaArcsec          = Math.Round(angularDiameterArcsec, 1);
        var phase                 = Math.Round(phase1, 2);
        var lightTimeHour         = PAMacros.DecimalHoursHour(lightTravelTimeHours);
        var lightTimeMinutes      = PAMacros.DecimalHoursMinute(lightTravelTimeHours);
        var lightTimeSeconds      = PAMacros.DecimalHoursSecond(lightTravelTimeHours);
        var posAngleBrightLimbDeg = Math.Round(chiDeg, 1);
        var approximateMagnitude  = Math.Round(approximateMagnitude1, 1);

        return(distanceAU, angDiaArcsec, phase, lightTimeHour, lightTimeMinutes, lightTimeSeconds, posAngleBrightLimbDeg, approximateMagnitude);
    }