public double MSPriceBS(double S, double K, double T, double sigma, double r, double q, int MaxIter, double Tol, double b, double dt)
        {
            BisectionAlgo BA         = new BisectionAlgo();
            MSset         mssettings = new MSset();

            mssettings.theta = Math.Log(K / S) / sigma / Math.Sqrt(T);
            mssettings.K     = K;
            mssettings.sigma = sigma;
            mssettings.r     = r;
            mssettings.q     = q;
            mssettings.T     = T;
            double a = 0.5 * mssettings.theta;
            double y = BA.Bisection(mssettings, a, b, Tol, MaxIter, dt);

            if (y < mssettings.theta)
            {
                y = mssettings.theta;
            }
            return(MSPutBS(y, mssettings));
        }
示例#2
0
        // Bisection Algorithm for Black Scholes pricing
        public double Bisection(MSset mssettings, double a, double b, double Tol, int MaxIter, double dy)
        {
            double lowCdif  = MSPutBSdiff(a, mssettings, dy);
            double highCdif = MSPutBSdiff(b, mssettings, dy);
            double y        = 0.0;
            double midP;

            if (lowCdif * highCdif > 0.0)
            {
                y = -999.0;
            }
            else
            {
                for (int x = 0; x <= MaxIter; x++)
                {
                    midP = (a + b) / 2.0;
                    double midCdif = MSPutBSdiff(midP, mssettings, dy);
                    if (Math.Abs(midCdif) < Tol)
                    {
                        break;
                    }
                    else
                    {
                        if (midCdif > 0.0)
                        {
                            a = midP;
                        }
                        else
                        {
                            b = midP;
                        }
                    }
                    y = midP;
                }
            }
            return(y);
        }
        public double MSPutBS(double y, MSset mssettings)
        {
            // The settings and parameters
            double theta = mssettings.theta;
            double K     = mssettings.K;
            double sigma = mssettings.sigma;
            double r     = mssettings.r;
            double q     = mssettings.q;
            double T     = mssettings.T;

            // The drift
            double mu = r - q;

            // The "C" coefficients evaluated at theta = y
            BlackScholesPrice BS  = new BlackScholesPrice();
            double            cdf = BS.NormCDF(y);
            double            pdf = BS.NormPDF(y);
            double            C1  = sigma * y * K / (y * cdf + pdf);
            double            C2  = -1.0 / 2.0 * (C1 * cdf * Math.Pow(sigma, 2.0) - 2.0 * C1 * cdf * mu + Math.Pow(sigma, 3.0) * Math.Pow(y, 2.0) * K) / sigma / (cdf * Math.Pow(y, 2.0) + cdf + y * pdf);
            double            C3  = 1.0 / 24.0 * (-24.0 * y * cdf * Math.Pow(sigma, 3.0) * C2 + 48.0 * y * cdf * sigma * C2 * mu + 24.0 * y * cdf * Math.Pow(sigma, 2.0) * r * C1 - 24.0 * pdf * C2 * Math.Pow(sigma, 3.0) + 48.0 * pdf * C2 * mu * sigma + 24.0 * pdf * r * C1 * Math.Pow(sigma, 2.0) - 3.0 * pdf * C1 * Math.Pow(sigma, 4.0) + 12.0 * pdf * C1 * Math.Pow(sigma, 2.0) * mu - 12.0 * pdf * C1 * Math.Pow(mu, 2.0) + 4.0 * Math.Pow(sigma, 5.0) * Math.Pow(y, 3.0) * K) / Math.Pow(sigma, 2.0) / (cdf * Math.Pow(y, 3.0) + 3.0 * y * cdf + pdf * Math.Pow(y, 2.0) + 2.0 * pdf);
            double            C4  = -1.0 / 48.0 * (-48.0 * cdf * Math.Pow(sigma, 3.0) * Math.Pow(y, 2.0) * r * C2 + 72.0 * cdf * Math.Pow(sigma, 4.0) * Math.Pow(y, 2.0) * C3 - 144.0 * cdf * Math.Pow(sigma, 2.0) * Math.Pow(y, 2.0) * C3 * mu - 48.0 * cdf * Math.Pow(sigma, 3.0) * r * C2 + 72.0 * cdf * Math.Pow(sigma, 4.0) * C3 - 144.0 * cdf * Math.Pow(sigma, 2.0) * C3 * mu + 12.0 * cdf * Math.Pow(sigma, 5.0) * C2 - 48.0 * cdf * Math.Pow(sigma, 3.0) * C2 * mu - 24.0 * cdf * Math.Pow(sigma, 4.0) * r * C1 + 48.0 * cdf * sigma * C2 * Math.Pow(mu, 2.0) + 48.0 * cdf * Math.Pow(sigma, 2.0) * mu * r * C1 - 48.0 * y * pdf * r * C2 * Math.Pow(sigma, 3.0) + 72.0 * y * pdf * C3 * Math.Pow(sigma, 4.0) - 144.0 * y * pdf * C3 * mu * Math.Pow(sigma, 2.0) - y * pdf * Math.Pow(sigma, 6.0) * C1 + 6.0 * y * pdf * Math.Pow(sigma, 4.0) * C1 * mu - 12.0 * y * pdf * Math.Pow(sigma, 2.0) * C1 * Math.Pow(mu, 2.0) + 8.0 * y * pdf * C1 * Math.Pow(mu, 3.0) + 2.0 * Math.Pow(sigma, 7.0) * Math.Pow(y, 4.0) * K) / Math.Pow(sigma, 3.0) / (cdf * Math.Pow(y, 4.0) + 6.0 * cdf * Math.Pow(y, 2.0) + 3.0 * cdf + pdf * Math.Pow(y, 3.0) + 5.0 * y * pdf);
            double            C5  = 1.0 / 1920.0 * (16.0 * Math.Pow(sigma, 9.0) * Math.Pow(y, 5.0) * K - 80.0 * pdf * Math.Pow(sigma, 7.0) * C2 + 5.0 * pdf * Math.Pow(sigma, 8.0) * C1 + 80.0 * pdf * C1 * Math.Pow(mu, 4.0) - 640.0 * pdf * Math.Pow(r, 2.0) * C3 * Math.Pow(sigma, 4.0) * C1 + 320.0 * pdf * r * C3 * Math.Pow(sigma, 2.0) * C1 * Math.Pow(mu, 2.0) + 640.0 * pdf * Math.Pow(mu, 2.0) * r * C1 * Math.Pow(sigma, 2.0) + 640.0 * pdf * r * C3 * Math.Pow(sigma, 5.0) * C2 + 640.0 * pdf * sigma * C2 * Math.Pow(mu, 3.0) + 480.0 * pdf * Math.Pow(sigma, 5.0) * C2 * mu - 960.0 * pdf * Math.Pow(sigma, 3.0) * C2 * Math.Pow(mu, 2.0) + 160.0 * pdf * Math.Pow(sigma, 6.0) * r * C1 + 120.0 * pdf * Math.Pow(sigma, 4.0) * C1 * Math.Pow(mu, 2.0) - 40.0 * pdf * Math.Pow(sigma, 6.0) * C1 * mu - 160.0 * pdf * Math.Pow(sigma, 2.0) * C1 * Math.Pow(mu, 3.0) + 3840.0 * pdf * r * Math.Pow(sigma, 4.0) * C3 + 1280.0 * pdf * r * Math.Pow(sigma, 5.0) * C2 - 320.0 * pdf * Math.Pow(r, 2.0) * Math.Pow(sigma, 4.0) * C1 + 15360.0 * pdf * Math.Pow(sigma, 3.0) * C4 * mu + 5760.0 * pdf * Math.Pow(sigma, 4.0) * C3 * mu - 5760.0 * pdf * Math.Pow(sigma, 2.0) * C3 * Math.Pow(mu, 2.0) + 23040.0 * y * cdf * Math.Pow(sigma, 3.0) * C4 * mu + 1920.0 * y * cdf * Math.Pow(sigma, 5.0) * r * C2 - 3840.0 * y * cdf * Math.Pow(sigma, 3.0) * r * C2 * mu - 3840.0 * pdf * Math.Pow(y, 2.0) * Math.Pow(sigma, 5.0) * C4 - 5.0 * pdf * Math.Pow(y, 2.0) * Math.Pow(sigma, 8.0) * C1 - 80.0 * pdf * Math.Pow(y, 2.0) * C1 * Math.Pow(mu, 4.0) - 960.0 * y * cdf * Math.Pow(sigma, 4.0) * Math.Pow(r, 2.0) * C1 + 5760.0 * y * cdf * Math.Pow(sigma, 4.0) * C3 * mu - 5760.0 * y * cdf * Math.Pow(sigma, 2.0) * C3 * Math.Pow(mu, 2.0) + 40.0 * pdf * Math.Pow(y, 2.0) * Math.Pow(sigma, 6.0) * C1 * mu - 120.0 * pdf * Math.Pow(y, 2.0) * Math.Pow(sigma, 4.0) * C1 * Math.Pow(mu, 2.0) + 160.0 * pdf * Math.Pow(y, 2.0) * Math.Pow(sigma, 2.0) * C1 * Math.Pow(mu, 3.0) + 7680.0 * pdf * Math.Pow(y, 2.0) * Math.Pow(sigma, 3.0) * C4 * mu + 1920.0 * pdf * Math.Pow(y, 2.0) * r * Math.Pow(sigma, 4.0) * C3 - 3840.0 * Math.Pow(y, 3.0) * cdf * Math.Pow(sigma, 5.0) * C4 - 11520.0 * y * cdf * Math.Pow(sigma, 5.0) * C4 - 1440.0 * y * cdf * Math.Pow(sigma, 6.0) * C3 - 320.0 * pdf * r * C3 * Math.Pow(sigma, 4.0) * C1 * mu - 1280.0 * pdf * r * C3 * Math.Pow(sigma, 3.0) * C2 * mu - 640.0 * pdf * Math.Pow(sigma, 4.0) * mu * r * C1 + 80.0 * pdf * r * C3 * Math.Pow(sigma, 6.0) * C1 - 7680.0 * pdf * Math.Pow(sigma, 5.0) * C4 - 1440.0 * pdf * Math.Pow(sigma, 6.0) * C3 + 1920.0 * Math.Pow(y, 3.0) * cdf * Math.Pow(sigma, 4.0) * r * C3 + 7680.0 * Math.Pow(y, 3.0) * cdf * Math.Pow(sigma, 3.0) * C4 * mu + 5760.0 * y * cdf * Math.Pow(sigma, 4.0) * r * C3 - 2560.0 * pdf * r * Math.Pow(sigma, 3.0) * C2 * mu) / Math.Pow(sigma, 4.0) / (cdf * Math.Pow(y, 5.0) + 10.0 * cdf * Math.Pow(y, 3.0) + 15.0 * y * cdf + pdf * Math.Pow(y, 4.0) + 9.0 * pdf * Math.Pow(y, 2.0) + 8.0 * pdf);

            //Set 1 polynomials
            double P01 = theta;
            double P11 = 0.0;
            double Q01 = 1.0;
            double Q11 = 0.0;

            //Set 2 polynomials
            double P02 = Math.Pow(theta, 2.0) + 1.0;
            double P12 = -1.0 / 2.0 * C1 * (-Math.Pow(sigma, 2.0) + 2.0 * mu) / sigma;
            double Q02 = theta;
            double Q12 = 0.0;

            //Set 3 polynomials
            double P03 = Math.Pow(theta, 3.0) + 3.0 * theta;
            double P13 = -theta * (-C2 * Math.Pow(sigma, 2.0) + 2.0 * C2 * mu + r * C1 * sigma) / sigma;
            double Q03 = Math.Pow(theta, 2.0) + 2.0;
            double Q13 = -1.0 / 8.0 * (-8.0 * C2 * Math.Pow(sigma, 3.0) + 16.0 * C2 * mu * sigma + 8.0 * r * C1 * Math.Pow(sigma, 2.0) - C1 * Math.Pow(sigma, 4.0) + 4.0 * C1 * Math.Pow(sigma, 2.0) * mu - 4.0 * C1 * Math.Pow(mu, 2.0)) / Math.Pow(sigma, 2.0);

            //Set 4 polynomials
            double P04 = Math.Pow(theta, 4.0) + 6.0 * Math.Pow(theta, 2.0) + 3.0;
            double P14 = -1.0 / 2.0 * (2.0 * r * C2 * sigma - 3.0 * C3 * Math.Pow(sigma, 2.0) + 6.0 * C3 * mu) / sigma * Math.Pow(theta, 2.0) + 1.0 / 4.0 * (-4.0 * r * C2 * Math.Pow(sigma, 2.0) + 6.0 * C3 * Math.Pow(sigma, 3.0) - 12.0 * C3 * sigma * mu + Math.Pow(sigma, 4.0) * C2 - 4.0 * Math.Pow(sigma, 2.0) * C2 * mu - 2.0 * Math.Pow(sigma, 3.0) * r * C1 + 4.0 * C2 * Math.Pow(mu, 2.0) + 4.0 * mu * r * C1 * sigma) / Math.Pow(sigma, 2.0);
            double Q04 = Math.Pow(theta, 3.0) + 5.0 * theta;
            double Q14 = -1.0 / 48.0 * (-72.0 * C3 * Math.Pow(sigma, 4.0) + 144.0 * C3 * mu * Math.Pow(sigma, 2.0) + 48.0 * r * C2 * Math.Pow(sigma, 3.0) + Math.Pow(sigma, 6.0) * C1 - 6.0 * Math.Pow(sigma, 4.0) * C1 * mu + 12.0 * Math.Pow(sigma, 2.0) * C1 * Math.Pow(mu, 2.0) - 8.0 * C1 * Math.Pow(mu, 3.0)) / Math.Pow(sigma, 3.0) * theta;

            //Set 5 polynomials
            double P05 = Math.Pow(theta, 5.0) + 10.0 * Math.Pow(theta, 3.0) + 15.0 * theta;
            double P15 = -(r * C3 * sigma - 2.0 * C4 * Math.Pow(sigma, 2.0) + 4.0 * C4 * mu) / sigma * Math.Pow(theta, 3.0) + 1.0 / 4.0 * (-12.0 * r * C3 * Math.Pow(sigma, 2.0) + 24.0 * C4 * Math.Pow(sigma, 3.0) - 48.0 * C4 * sigma * mu - 4.0 * r * C2 * Math.Pow(sigma, 3.0) + 8.0 * r * sigma * C2 * mu + 2.0 * Math.Pow(r, 2.0) * Math.Pow(sigma, 2.0) * C1 + 3.0 * C3 * Math.Pow(sigma, 4.0) - 12.0 * C3 * mu * Math.Pow(sigma, 2.0) + 12.0 * C3 * Math.Pow(mu, 2.0)) / Math.Pow(sigma, 2.0) * theta;
            double Q05 = Math.Pow(theta, 4.0) + 9.0 * Math.Pow(theta, 2.0) + 8;
            double Q15 = -1.0 / 384.0 * (-Math.Pow(sigma, 8.0) * C1 + 8.0 * Math.Pow(sigma, 6.0) * C1 * mu - 24.0 * Math.Pow(sigma, 4.0) * C1 * Math.Pow(mu, 2.0) + 32.0 * Math.Pow(sigma, 2.0) * C1 * Math.Pow(mu, 3.0) - 16.0 * C1 * Math.Pow(mu, 4.0) - 768.0 * C4 * Math.Pow(sigma, 5.0) + 1536.0 * C4 * Math.Pow(sigma, 3.0) * mu + 384.0 * r * C3 * Math.Pow(sigma, 4.0)) / Math.Pow(sigma, 4.0) * Math.Pow(theta, 2.0) + 1.0 / 384.0 * (-128.0 * r * C3 * Math.Pow(sigma, 5.0) * C2 - 128.0 * Math.Pow(mu, 2.0) * r * C1 * Math.Pow(sigma, 2.0) + 1152.0 * C3 * Math.Pow(mu, 2.0) * Math.Pow(sigma, 2.0) + 32.0 * Math.Pow(sigma, 2.0) * C1 * Math.Pow(mu, 3.0) - 24.0 * Math.Pow(sigma, 4.0) * C1 * Math.Pow(mu, 2.0) + 8.0 * Math.Pow(sigma, 6.0) * C1 * mu - 256.0 * Math.Pow(sigma, 5.0) * r * C2 - 1152.0 * Math.Pow(sigma, 4.0) * C3 * mu - 768.0 * r * C3 * Math.Pow(sigma, 4.0) + 128.0 * Math.Pow(r, 2.0) * C3 * Math.Pow(sigma, 4.0) * C1 - 3072.0 * C4 * Math.Pow(sigma, 3.0) * mu + 256.0 * r * C3 * Math.Pow(sigma, 3.0) * C2 * mu - 16.0 * r * C3 * Math.Pow(sigma, 6.0) * C1 + 64.0 * r * C3 * Math.Pow(sigma, 4.0) * C1 * mu - 64.0 * r * C3 * Math.Pow(sigma, 2.0) * C1 * Math.Pow(mu, 2.0) + 64.0 * Math.Pow(sigma, 4.0) * Math.Pow(r, 2.0) * C1 - 128.0 * sigma * C2 * Math.Pow(mu, 3.0) + 192.0 * Math.Pow(sigma, 3.0) * C2 * Math.Pow(mu, 2.0) - 32.0 * Math.Pow(sigma, 6.0) * r * C1 - 96.0 * Math.Pow(sigma, 5.0) * C2 * mu + 1536.0 * C4 * Math.Pow(sigma, 5.0) + 512.0 * mu * r * C2 * Math.Pow(sigma, 3.0) - 16.0 * C1 * Math.Pow(mu, 4.0) + 288.0 * Math.Pow(sigma, 6.0) * C3 - Math.Pow(sigma, 8.0) * C1 + 16.0 * Math.Pow(sigma, 7.0) * C2 + 128.0 * Math.Pow(sigma, 4.0) * mu * r * C1) / Math.Pow(sigma, 4.0);

            // The Black-Scholes American put approximation
            cdf = BS.NormCDF(theta);
            pdf = BS.NormPDF(theta);

            double Price = (C1 * (P01 * cdf + Q01 * pdf) + P11 * cdf + Q11 * pdf) * Math.Pow(T, 0.5)
                           + (C2 * (P02 * cdf + Q02 * pdf) + P12 * cdf + Q12 * pdf) * T
                           + (C3 * (P03 * cdf + Q03 * pdf) + P13 * cdf + Q13 * pdf) * Math.Pow(T, 1.5)
                           + (C4 * (P04 * cdf + Q04 * pdf) + P14 * cdf + Q14 * pdf) * Math.Pow(T, 2.0)
                           + (C5 * (P05 * cdf + Q05 * pdf) + P15 * cdf + Q15 * pdf) * Math.Pow(T, 2.5);

            return(Price);
        }
示例#4
0
        static void Main(string[] args)
        {
            // Reproduces Table 2 in Medvedev and Scaillet (2010) for American puts
            // under the Black Scholes model

            // Option settings
            double S = 40.0;
            double r = 0.0488;
            double q = 0.00;

            // Medvedev-Scaillet put option settings
            MSset mssettings = new MSset();

            mssettings.r = r;
            mssettings.q = q;

            // Trinomial tree settings
            int    N        = 500;
            string PutCall  = "P";
            string EuroAmer = "A";

            // Table 2 settings
            double[] sigma = new double[9] {
                0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4
            };
            double[] T = new double[9] {
                1.0 / 12.0, 1.0 / 3.0, 7.0 / 12.0, 1.0 / 12.0, 1.0 / 3.0, 7.0 / 12.0, 1.0 / 12.0, 1.0 / 3.0, 7.0 / 12.0
            };
            double[,] BSPut = new double[3, 9];     // Black-Scholes
            double[,] MSPut = new double[3, 9];     // Medvedev-Scaillet
            double[,] BTPut = new double[3, 9];     // Trinomial tree
            double SumError = 0.0;

            // Settings for the Bisection Method
            int    MaxIter = 20000;
            double tol     = 1e-20;
            double dt      = 1e-10;
            double b       = 3.0;

            // Find the tree and M-S prices
            BlackScholesPrice BS = new BlackScholesPrice();
            MSPrice           MS = new MSPrice();
            TrinomialPrice    TP = new TrinomialPrice();

            double[] K = new double[3] {
                35.0, 40.0, 45.0
            };
            for (int k = 0; k <= 2; k++)
            {
                for (int i = 0; i <= 8; i++)
                {
                    // Black Scholes European put
                    BSPut[k, i] = BS.BlackScholes(S, K[k], T[i], r, q, sigma[i], "P");
                    // Medvedev Scaillet American Put
                    MSPut[k, i] = MS.MSPriceBS(S, K[k], T[i], sigma[i], r, q, MaxIter, tol, b, dt);
                    // Trinomial Tree American put
                    BTPut[k, i] = TP.TrinomialTree(S, K[k], r, q, T[i], sigma[i], N, PutCall, EuroAmer);
                    SumError   += Math.Abs(MSPut[k, i] - BTPut[k, i]);
                }
            }

            // Output the results for K = 35, 40, 45
            Console.WriteLine(" ");
            Console.WriteLine("                       Table 2 of Medvedev and Scaillet (2010)");
            Console.WriteLine("----------------------------------------------------------------------------");
            Console.WriteLine("                sigma = 0.2          sigma = 0.3            sigma = 0.4");
            Console.WriteLine("         ---------------------  ---------------------  ---------------------");
            Console.WriteLine("K = 35   T=1/12  T=1/3  T=7/12  T=1/12  T=1/3  T=7/12  T=1/12  T=1/3  T=7/12 ");
            Console.WriteLine("----------------------------------------------------------------------------");
            for (int k = 0; k <= 2; k++)
            {
                Console.WriteLine("EuroPut  {0,6:F3} {1,6:F3} {2,6:F3} {3,8:F3} {4,6:F3} {5,6:F3} {6,8:F3} {7,6:F3} {8,7:F3}",
                                  BSPut[k, 0], BSPut[k, 1], BSPut[k, 2], BSPut[k, 3], BSPut[k, 4], BSPut[k, 5], BSPut[k, 6], BSPut[k, 7], BSPut[k, 8]);
                Console.WriteLine("MSPut    {0,6:F3} {1,6:F3} {2,6:F3} {3,8:F3} {4,6:F3} {5,6:F3} {6,8:F3} {7,6:F3} {8,7:F3}",
                                  MSPut[k, 0], MSPut[k, 1], MSPut[k, 2], MSPut[k, 3], MSPut[k, 4], MSPut[k, 5], MSPut[k, 6], MSPut[k, 7], MSPut[k, 8]);
                Console.WriteLine("TreePut  {0,6:F3} {1,6:F3} {2,6:F3} {3,8:F3} {4,6:F3} {5,6:F3} {6,8:F3} {7,6:F3} {8,7:F3}",
                                  BTPut[k, 0], BTPut[k, 1], BTPut[k, 2], BTPut[k, 3], BTPut[k, 4], BTPut[k, 5], BTPut[k, 6], BTPut[k, 7], BTPut[k, 8]);
                Console.WriteLine("----------------------------------------------------------------------------");
            }
            Console.WriteLine("EuroPut = Black-Scholes closed form European put price");
            Console.WriteLine("MSPut   = Fifth-order MS (2001) American put expansion");
            Console.WriteLine("TreePut = Trinomial tree American put with {0} steps", N);
            Console.WriteLine("Sum of absolute errors {0,8:F5}", SumError);
            Console.WriteLine("----------------------------------------------------------------------------");
            Console.WriteLine(" ");
        }
示例#5
0
 private void import_bw_DoWork(object sender, DoWorkEventArgs e)
 {
     curMSset = new MSset();
     curMSset.readFile(importDialog.FileName, RegexText.Text);
 }
示例#6
0
        // Derivative of the MS approximation
        public double MSPutBSdiff(double y, MSset mssettings, double dy)
        {
            MSPrice MS = new MSPrice();

            return((MS.MSPutBS(y + dy, mssettings) - MS.MSPutBS(y - dy, mssettings)) / 2.0 / dy);
        }