public void ActivateAll() { layerToTest.ActivateNeurons(); foreach (Neuron inputNeuron in layerToTest.Neurons) { Assert.AreEqual(1, inputNeuron.Activation); } }
public void Scaffold_Testing_Layer() { activator = new ReLU(); layerToTest = new Layer(5); learningRate = 0.01; layerToTest.InputToNeurons(neuronInput); testOutputLayer = new Layer(5, layerToTest, activator, 2); // generates a layer with all its neurons taking in the previous layer as inputs! // Essentially, this layer becomes the output to the previous layer // If this creation of the output layer worked, then by backpropping one of the neurons, all the previous neurons' errors should be 2 testOutputLayer.InputToNeurons(neuronInput); testOutputLayer.ActivateNeurons(); testOutputLayer.SetErrorNeurons(expectedOutput); }