static void Main(string[] args) { // TODO: Use ComputeSharp to run code on GPU /* * using ReadWriteBuffer<float> buffer = Gpu.Default.AllocateReadWriteBuffer<float>(1000); * Gpu.Default.For(1000, id => buffer[id.X] = id.X); * float[] array = buffer.GetData(); */ var dataPath = FileHelper.FindAppFolder("Data"); int imageWidth, imageHeight; byte[][] images; byte[] labels; { var bytes = File.ReadAllBytes(Path.Combine(dataPath, "MNIST", "train-images.idx3-ubyte")); var reader = new PacketReader(); reader.Open(bytes); var magic = reader.ReadInt(); if (magic != 0x00000803) { throw new Exception("Wrong magic number"); } var imageCount = reader.ReadInt(); Trace.WriteLine($"Found {imageCount} images."); imageHeight = reader.ReadInt(); imageWidth = reader.ReadInt(); images = new byte[imageCount][]; for (var i = 0; i < imageCount; i++) { images[i] = reader.ReadBytes(imageHeight * imageWidth).ToArray(); } } { var bytes = File.ReadAllBytes(Path.Combine(dataPath, "MNIST", "train-labels.idx1-ubyte")); var reader = new PacketReader(); reader.Open(bytes); var magic = reader.ReadInt(); if (magic != 0x00000801) { throw new Exception("Wrong magic number"); } var itemCount = reader.ReadInt(); Trace.WriteLine($"Found {itemCount} labels."); labels = new byte[itemCount]; for (var i = 0; i < itemCount; i++) { labels[i] = reader.ReadByte(); } } { var displayedImageIndex = 0; var layerSetup = new int[] { imageWidth *imageHeight, 600, 400, 200, 100, 10 }; var net = new NeuralNet(layerSetup); var netInputs = new float[imageWidth * imageHeight]; var netLearningRate = 0.1f; var netResult = -1; void ResetNetwork() { net = new NeuralNet(layerSetup); RunNetworkAndRenderImage(displayedImageIndex); } void RunNetwork(int imageIndex) { for (var i = 0; i < netInputs.Length; i++) { netInputs[i] = images[imageIndex][i] / (float)byte.MaxValue; } var output = net.Compute(netInputs); Debug.Assert(output.Length == 10); // Get the digit the network has seen var max = 0f; for (var i = 0; i < output.Length; i++) { if (output[i] > max) { max = output[i]; netResult = i; } } var expectedOutput = new float[10]; expectedOutput[labels[imageIndex]] = 1f; net.BackpropagateError(expectedOutput); } var windowWidth = 1280; var windowHeight = 720; var imageScale = 8; var labelText = ""; var imageText = ""; var statusText = ""; SDL.SDL_Init(SDL.SDL_INIT_VIDEO); SDL.SDL_CreateWindowAndRenderer(windowWidth, windowHeight, 0, out var window, out var renderer); SDL.SDL_SetWindowTitle(window, "Neural"); var font = Font.LoadFromChevyRayFolder(renderer, Path.Combine(dataPath, "Fonts", "ChevyRay - Softsquare Mono")); var fontStyle = new FontStyle(font) { Scale = 2, LetterSpacing = 1 }; var smallFontStyle = new FontStyle(font) { Scale = 1, LetterSpacing = 1 }; var imageTexture = IntPtr.Zero; var imageSourceRect = new SDL.SDL_Rect { x = 0, y = 0, w = imageWidth, h = imageHeight }; var imageDestRect = new SDL.SDL_Rect { x = windowWidth / 2 - (imageWidth / 2 * imageScale), y = windowHeight / 2 - (imageHeight / 2 * imageScale), w = imageWidth * imageScale, h = imageHeight * imageScale }; void LoadImageForRender(int imageIndex) { if (imageTexture != IntPtr.Zero) { SDL.SDL_DestroyTexture(imageTexture); } var pixels = new byte[imageWidth * imageHeight * 4]; for (var i = 0; i < imageWidth * imageHeight; i++) { pixels[i * 4 + 0] = pixels[i * 4 + 1] = pixels[i * 4 + 2] = images[imageIndex][i]; pixels[i * 4 + 3] = 0xff; } unsafe { fixed(byte *pixelsPointer = pixels) { var surface = SDL.SDL_CreateRGBSurfaceWithFormatFrom((IntPtr)pixelsPointer, imageWidth, imageHeight, 24, imageWidth * 4, SDL.SDL_PIXELFORMAT_ARGB8888); imageTexture = SDL.SDL_CreateTextureFromSurface(renderer, surface); SDL.SDL_FreeSurface(surface); } } labelText = $"Label: {labels[imageIndex]}, Network output: {netResult}"; imageText = $"({imageIndex}/{images.Length})"; } void RunNetworkAndRenderImage(int imageIndex) { RunNetwork(imageIndex); LoadImageForRender(imageIndex); } RunNetworkAndRenderImage(displayedImageIndex); var running = true; AutoMode autoMode = AutoMode.None; var autoImageIndex = 0; var correctlyPredicted = 0; while (running) { while (running && SDL.SDL_PollEvent(out var @event) != 0) { switch (@event.type) { case SDL.SDL_EventType.SDL_QUIT: running = false; break; case SDL.SDL_EventType.SDL_WINDOWEVENT: switch (@event.window.windowEvent) { case SDL.SDL_WindowEventID.SDL_WINDOWEVENT_CLOSE: running = false; break; } break; case SDL.SDL_EventType.SDL_KEYDOWN: switch (@event.key.keysym.sym) { case SDL.SDL_Keycode.SDLK_RIGHT: if (displayedImageIndex < images.Length - 1) { displayedImageIndex++; RunNetworkAndRenderImage(displayedImageIndex); } break; case SDL.SDL_Keycode.SDLK_LEFT: if (displayedImageIndex > 0) { displayedImageIndex--; RunNetworkAndRenderImage(displayedImageIndex); } break; case SDL.SDL_Keycode.SDLK_p: if (autoMode == AutoMode.Train) { autoMode = AutoMode.None; } else { autoMode = AutoMode.Train; autoImageIndex = 0; } break; /* case SDL.SDL_Keycode.SDLK_t: * net.Train(netLearningRate, netInputs); * RunNetworkAndRenderImage(displayedImageIndex); * break; */ case SDL.SDL_Keycode.SDLK_c: if (autoMode == AutoMode.Check) { autoMode = AutoMode.None; } else { autoMode = AutoMode.Check; autoImageIndex = 0; correctlyPredicted = 0; } break; case SDL.SDL_Keycode.SDLK_r: if (autoMode == AutoMode.None) { ResetNetwork(); statusText = ""; } break; } break; } } if (!running) { break; } SDL.SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255); SDL.SDL_RenderClear(renderer); // Draw image SDL.SDL_RenderCopy(renderer, imageTexture, ref imageSourceRect, ref imageDestRect); // Draw network { var start = new Point(10, 10); var size = 4; var spacing = 2; var columnOffset = -1; var maxPerColumn = 50; for (var i = 0; i < net.Layers.Length; i++) { var layer = net.Layers[i]; for (var j = 0; j < layer.Outputs.Length; j++) { if (j % maxPerColumn == 0) { columnOffset++; } var value = Math.Clamp(layer.Outputs[j], 0f, 1f); SDL.SDL_SetRenderDrawColor(renderer, (byte)(0xff * (1f - value)), (byte)(0xff * value), 0x00, 0xff); var rect = new SDL.SDL_Rect { x = start.X + (i + columnOffset) * (size + spacing), y = start.Y + (j % maxPerColumn) * (size + spacing), w = size, h = size }; SDL.SDL_RenderFillRect(renderer, ref rect); } } } // Draw info fontStyle.DrawText(8, windowHeight - fontStyle.Size - 8, "Left/Right to navigate, P to train, C to check accuracy, R to reset network"); fontStyle.DrawText(windowWidth / 2 - fontStyle.MeasureText(labelText) / 2, imageDestRect.y + imageDestRect.h + 8, labelText); fontStyle.DrawText(windowWidth - fontStyle.MeasureText(imageText) - 8, windowHeight - fontStyle.Size - 8, imageText); fontStyle.DrawText(windowWidth - fontStyle.MeasureText(statusText) - 8, 8, statusText); smallFontStyle.DrawText(8, windowHeight - fontStyle.Size * 4 - 12, "Written by Elisee Maurer (@elisee)"); smallFontStyle.DrawText(8, windowHeight - fontStyle.Size * 3 - 12, "MNIST database: yann.lecun.com/exdb/mnist/"); smallFontStyle.DrawText(8, windowHeight - fontStyle.Size * 2 - 12, "Font by Chevy Ray - pixel-fonts.com"); SDL.SDL_RenderPresent(renderer); // Thread.Sleep(1); switch (autoMode) { case AutoMode.Train: for (var i = 0; i < 10; i++) { RunNetwork(autoImageIndex); net.Train(netLearningRate, netInputs); autoImageIndex++; if (autoImageIndex == images.Length) { autoMode = AutoMode.None; break; } } statusText = $"Trained on {autoImageIndex} images."; RunNetworkAndRenderImage(displayedImageIndex); break; case AutoMode.Check: for (var i = 0; i < 10; i++) { RunNetwork(autoImageIndex); if (labels[autoImageIndex] == netResult) { correctlyPredicted++; } autoImageIndex++; if (autoImageIndex == images.Length) { autoMode = AutoMode.None; break; } } var percent = Math.Round(100f * correctlyPredicted / autoImageIndex, 2, MidpointRounding.AwayFromZero); statusText = $"Correctly predicted {percent:0.00}% ({correctlyPredicted}/{autoImageIndex})"; break; } } } }