示例#1
0
        /// <summary>
        /// Predict all unknown values as global mean rating.
        /// </summary>
        public string RunGlobalMean()
        {
            if (!ReadyForNumerical)
            {
                GetReadyForNumerical();
            }
            StringBuilder log = new StringBuilder();

            log.AppendLine(Utils.PrintHeading("Global Mean"));

            // Prediction
            Utils.StartTimer();
            double     globalMean  = R_train.GetGlobalMean();
            DataMatrix R_predicted = R_unknown.Multiply(globalMean);

            log.AppendLine(Utils.StopTimer());

            // Numerical Evaluation
            log.AppendLine(Utils.PrintValue("RMSE", RMSE.Evaluate(R_test, R_predicted).ToString("0.0000")));
            log.AppendLine(Utils.PrintValue("MAE", MAE.Evaluate(R_test, R_predicted).ToString("0.0000")));

            return(log.ToString());
        }
示例#2
0
        public static DataMatrix PredictRatings(PrefRelations PR_train,
                                                DataMatrix R_unknown, int K, SimilarityData neighborsByUser)
        {
            Debug.Assert(PR_train.UserCount == R_unknown.UserCount);
            Debug.Assert(PR_train.ItemCount == R_unknown.ItemCount);

            // This matrix stores predictions
            DataMatrix R_predicted = new DataMatrix(R_unknown.UserCount, R_unknown.ItemCount);

            // This can be considered as the R_train in standard UserKNN
            SparseMatrix positionMatrix            = PR_train.GetPositionMatrix();
            DataMatrix   ratingMatrixFromPositions = new DataMatrix(positionMatrix);

            Vector <double> meanByUser = ratingMatrixFromPositions.GetUserMeans();
            Vector <double> meanByItem = ratingMatrixFromPositions.GetItemMeans();
            double          globalMean = ratingMatrixFromPositions.GetGlobalMean();

            // Predict positions for each test user
            // Appears to be very fast, parallel.foreach is unnecessary
            foreach (Tuple <int, Vector <double> > user in R_unknown.Users)
            {
                int             indexOfUser             = user.Item1;
                Vector <double> indexesOfUnknownRatings = user.Item2;

                Utils.PrintEpoch("Predicting user/total", indexOfUser, PR_train.UserCount);

                // Note that there are more than K neighbors in the list (sorted by similarity)
                // we will use the top-K neighbors WHO HAVE RATED THE ITEM
                // For example we have 200 top neighbors, and we hope there are
                // K neighbors in the list have rated the item. We can't keep
                // everyone in the neighbor list because there are too many for large data sets
                var topNeighborsOfUser = neighborsByUser[indexOfUser];

                double meanOfUser = meanByUser[indexOfUser];

                // Loop through each position to be predicted
                foreach (Tuple <int, double> unknownRating in indexesOfUnknownRatings.EnumerateIndexed(Zeros.AllowSkip))
                {
                    int indexOfUnknownItem = unknownRating.Item1;

                    // Compute the position of this item for the user
                    // by combining neighbors' positions on this item
                    double weightedSum      = 0;
                    double weightSum        = 0;
                    int    currentTopKCount = 0;
                    foreach (KeyValuePair <int, double> neighbor in topNeighborsOfUser)
                    {
                        int    indexOfNeighbor        = neighbor.Key;
                        double similarityOfNeighbor   = neighbor.Value;
                        double itemPositionOfNeighbor = ratingMatrixFromPositions[indexOfNeighbor, indexOfUnknownItem];

                        // We count only if the neighbor has seen this item before
                        if (itemPositionOfNeighbor != 0)
                        {
                            // Recall that we use a constant to hold position value 0
                            // we revert it back here
                            if (itemPositionOfNeighbor == Config.ZeroInSparseMatrix)
                            {
                                Debug.Assert(true, "By using the PositionShift constant, we should not be in here.");
                                itemPositionOfNeighbor = 0;
                            }
                            weightSum   += similarityOfNeighbor;
                            weightedSum += (itemPositionOfNeighbor - meanByUser[indexOfNeighbor]) * similarityOfNeighbor;
                            currentTopKCount++;
                            if (currentTopKCount >= K)
                            {
                                break;
                            }
                        }
                    }

                    // If any neighbor has seen this item
                    if (currentTopKCount != 0)
                    {
                        // TODO: Add user mean may improve the performance
                        R_predicted[indexOfUser, indexOfUnknownItem] = meanOfUser + weightedSum / weightSum;
                    }
                    else
                    {
                        R_predicted[indexOfUser, indexOfUnknownItem] = globalMean;
                    }
                }
            }//);
            return(R_predicted);
        }
示例#3
0
        public static DataMatrix PredictRatings(DataMatrix R_train, DataMatrix R_unknown,
                                                int maxEpoch, double learnRate, double regularization, int factorCount)
        {
            int        userCount       = R_train.UserCount;
            int        itemCount       = R_train.ItemCount;
            int        ratingCount     = R_train.NonZerosCount;
            double     meanOfGlobal    = R_train.GetGlobalMean();
            DataMatrix R_train_unknown = R_train.IndexesOfNonZeroElements();  // For testing convergence

            // User latent vectors with default seed
            Matrix <double> P = Utils.CreateRandomMatrixFromNormal(userCount, factorCount, 0, 0.1, Config.Seed);
            // Matrix<double> P = Utils.CreateRandomMatrixFromUniform(userCount, factorCount, 0, 0.1, Config.Seed);
            // Item latent vectors with a different seed
            Matrix <double> Q = Utils.CreateRandomMatrixFromNormal(factorCount, itemCount, 0, 0.1, Config.Seed + 1);
            //Matrix<double> Q = Utils.CreateRandomMatrixFromUniform(factorCount, itemCount, 0, 0.1, Config.Seed + 1);

            // SGD
            double e_prev = double.MaxValue;

            for (int epoch = 0; epoch < maxEpoch; ++epoch)
            {
                foreach (Tuple <int, int, double> element in R_train.Ratings)
                {
                    int    indexOfUser = element.Item1;
                    int    indexOfItem = element.Item2;
                    double rating      = element.Item3;

                    double e_ij = rating - (meanOfGlobal + P.Row(indexOfUser).DotProduct(Q.Column(indexOfItem)));

                    // Update feature vectors
                    Vector <double> P_u = P.Row(indexOfUser);
                    Vector <double> Q_i = Q.Column(indexOfItem);

                    Vector <double> P_u_updated = P_u + (Q_i.Multiply(e_ij) - P_u.Multiply(regularization)).Multiply(learnRate);
                    P.SetRow(indexOfUser, P_u_updated);

                    Vector <double> Q_i_updated = Q_i + (P_u.Multiply(e_ij) - Q_i.Multiply(regularization)).Multiply(learnRate);
                    Q.SetColumn(indexOfItem, Q_i_updated);

                    #region Update feature vectors loop version

                    /*
                     * // Update feature vectors
                     * for (int k = 0; k < factorCount; ++k)
                     * {
                     *  double factorOfUser = P[indexOfUser, k];
                     *  double factorOfItem = Q[k, indexOfItem];
                     *
                     *  P[indexOfUser, k] += learnRate * (e_ij * factorOfItem - regularization * factorOfUser);
                     *  Q[k, indexOfItem] += learnRate * (e_ij * factorOfUser - regularization * factorOfItem);
                     * }
                     */
                    #endregion
                }

                // Display the current regularized error see if it converges

                double e_curr = 0;
                if (epoch == 0 || epoch == maxEpoch - 1 || epoch % (int)Math.Ceiling(maxEpoch * 0.1) == 4)
                {
                    Matrix <double> predictedMatrix      = R_train_unknown.PointwiseMultiply(P.Multiply(Q));
                    SparseMatrix    correctMatrix        = R_train.Matrix;
                    double          squaredError         = (correctMatrix - predictedMatrix).SquaredSum();
                    double          regularizationPenaty = regularization * (P.SquaredSum() + Q.SquaredSum());
                    double          objective            = squaredError + regularizationPenaty;

                    #region Linear implementation

                    /*
                     * double e = 0;
                     * foreach (Tuple<int, int, double> element in R_train.Ratings)
                     * {
                     *  int indexOfUser = element.Item1;
                     *  int indexOfItem = element.Item2;
                     *  double rating = element.Item3;
                     *
                     *  e += Math.Pow(rating - P.Row(indexOfUser).DotProduct(Q.Column(indexOfItem)), 2);
                     *
                     *  for (int k = 0; k < factorCount; ++k)
                     *  {
                     *      e += (regularization / 2) * (Math.Pow(P[indexOfUser, k], 2) + Math.Pow(Q[k, indexOfItem], 2));
                     *  }
                     * }
                     */
                    #endregion

                    // Record the current error
                    e_curr = objective;

                    // Stop the learning if the regularized error falls below a certain threshold
                    if (e_prev - e_curr < 0.001)
                    {
                        Console.WriteLine("Improvment less than 0.001, learning stopped.");
                        break;
                    }
                    e_prev = e_curr;

                    Utils.PrintEpoch("Epoch", epoch, maxEpoch, "Objective cost", objective);
                }
            }

            SparseMatrix R_predicted = new SparseMatrix(R_unknown.UserCount, R_unknown.ItemCount);
            foreach (var element in R_unknown.Matrix.EnumerateIndexed(Zeros.AllowSkip))
            {
                int    indexOfUser = element.Item1;
                int    indexOfItem = element.Item2;
                double r_predicted = meanOfGlobal + P.Row(indexOfUser) * Q.Column(indexOfItem);

                if (r_predicted > Config.Ratings.MaxRating)
                {
                    r_predicted = Config.Ratings.MaxRating;
                }
                if (r_predicted < Config.Ratings.MinRating)
                {
                    r_predicted = Config.Ratings.MinRating;
                }

                R_predicted[indexOfUser, indexOfItem] = r_predicted;
            }
            return(new DataMatrix(R_predicted));
            //return new RatingMatrix(R_unknown.PointwiseMultiply(P.Multiply(Q)));
        }