/// <summary> /// Predict all unknown values as global mean rating. /// </summary> public string RunGlobalMean() { if (!ReadyForNumerical) { GetReadyForNumerical(); } StringBuilder log = new StringBuilder(); log.AppendLine(Utils.PrintHeading("Global Mean")); // Prediction Utils.StartTimer(); double globalMean = R_train.GetGlobalMean(); DataMatrix R_predicted = R_unknown.Multiply(globalMean); log.AppendLine(Utils.StopTimer()); // Numerical Evaluation log.AppendLine(Utils.PrintValue("RMSE", RMSE.Evaluate(R_test, R_predicted).ToString("0.0000"))); log.AppendLine(Utils.PrintValue("MAE", MAE.Evaluate(R_test, R_predicted).ToString("0.0000"))); return(log.ToString()); }
public static DataMatrix PredictRatings(PrefRelations PR_train, DataMatrix R_unknown, int K, SimilarityData neighborsByUser) { Debug.Assert(PR_train.UserCount == R_unknown.UserCount); Debug.Assert(PR_train.ItemCount == R_unknown.ItemCount); // This matrix stores predictions DataMatrix R_predicted = new DataMatrix(R_unknown.UserCount, R_unknown.ItemCount); // This can be considered as the R_train in standard UserKNN SparseMatrix positionMatrix = PR_train.GetPositionMatrix(); DataMatrix ratingMatrixFromPositions = new DataMatrix(positionMatrix); Vector <double> meanByUser = ratingMatrixFromPositions.GetUserMeans(); Vector <double> meanByItem = ratingMatrixFromPositions.GetItemMeans(); double globalMean = ratingMatrixFromPositions.GetGlobalMean(); // Predict positions for each test user // Appears to be very fast, parallel.foreach is unnecessary foreach (Tuple <int, Vector <double> > user in R_unknown.Users) { int indexOfUser = user.Item1; Vector <double> indexesOfUnknownRatings = user.Item2; Utils.PrintEpoch("Predicting user/total", indexOfUser, PR_train.UserCount); // Note that there are more than K neighbors in the list (sorted by similarity) // we will use the top-K neighbors WHO HAVE RATED THE ITEM // For example we have 200 top neighbors, and we hope there are // K neighbors in the list have rated the item. We can't keep // everyone in the neighbor list because there are too many for large data sets var topNeighborsOfUser = neighborsByUser[indexOfUser]; double meanOfUser = meanByUser[indexOfUser]; // Loop through each position to be predicted foreach (Tuple <int, double> unknownRating in indexesOfUnknownRatings.EnumerateIndexed(Zeros.AllowSkip)) { int indexOfUnknownItem = unknownRating.Item1; // Compute the position of this item for the user // by combining neighbors' positions on this item double weightedSum = 0; double weightSum = 0; int currentTopKCount = 0; foreach (KeyValuePair <int, double> neighbor in topNeighborsOfUser) { int indexOfNeighbor = neighbor.Key; double similarityOfNeighbor = neighbor.Value; double itemPositionOfNeighbor = ratingMatrixFromPositions[indexOfNeighbor, indexOfUnknownItem]; // We count only if the neighbor has seen this item before if (itemPositionOfNeighbor != 0) { // Recall that we use a constant to hold position value 0 // we revert it back here if (itemPositionOfNeighbor == Config.ZeroInSparseMatrix) { Debug.Assert(true, "By using the PositionShift constant, we should not be in here."); itemPositionOfNeighbor = 0; } weightSum += similarityOfNeighbor; weightedSum += (itemPositionOfNeighbor - meanByUser[indexOfNeighbor]) * similarityOfNeighbor; currentTopKCount++; if (currentTopKCount >= K) { break; } } } // If any neighbor has seen this item if (currentTopKCount != 0) { // TODO: Add user mean may improve the performance R_predicted[indexOfUser, indexOfUnknownItem] = meanOfUser + weightedSum / weightSum; } else { R_predicted[indexOfUser, indexOfUnknownItem] = globalMean; } } }//); return(R_predicted); }
public static DataMatrix PredictRatings(DataMatrix R_train, DataMatrix R_unknown, int maxEpoch, double learnRate, double regularization, int factorCount) { int userCount = R_train.UserCount; int itemCount = R_train.ItemCount; int ratingCount = R_train.NonZerosCount; double meanOfGlobal = R_train.GetGlobalMean(); DataMatrix R_train_unknown = R_train.IndexesOfNonZeroElements(); // For testing convergence // User latent vectors with default seed Matrix <double> P = Utils.CreateRandomMatrixFromNormal(userCount, factorCount, 0, 0.1, Config.Seed); // Matrix<double> P = Utils.CreateRandomMatrixFromUniform(userCount, factorCount, 0, 0.1, Config.Seed); // Item latent vectors with a different seed Matrix <double> Q = Utils.CreateRandomMatrixFromNormal(factorCount, itemCount, 0, 0.1, Config.Seed + 1); //Matrix<double> Q = Utils.CreateRandomMatrixFromUniform(factorCount, itemCount, 0, 0.1, Config.Seed + 1); // SGD double e_prev = double.MaxValue; for (int epoch = 0; epoch < maxEpoch; ++epoch) { foreach (Tuple <int, int, double> element in R_train.Ratings) { int indexOfUser = element.Item1; int indexOfItem = element.Item2; double rating = element.Item3; double e_ij = rating - (meanOfGlobal + P.Row(indexOfUser).DotProduct(Q.Column(indexOfItem))); // Update feature vectors Vector <double> P_u = P.Row(indexOfUser); Vector <double> Q_i = Q.Column(indexOfItem); Vector <double> P_u_updated = P_u + (Q_i.Multiply(e_ij) - P_u.Multiply(regularization)).Multiply(learnRate); P.SetRow(indexOfUser, P_u_updated); Vector <double> Q_i_updated = Q_i + (P_u.Multiply(e_ij) - Q_i.Multiply(regularization)).Multiply(learnRate); Q.SetColumn(indexOfItem, Q_i_updated); #region Update feature vectors loop version /* * // Update feature vectors * for (int k = 0; k < factorCount; ++k) * { * double factorOfUser = P[indexOfUser, k]; * double factorOfItem = Q[k, indexOfItem]; * * P[indexOfUser, k] += learnRate * (e_ij * factorOfItem - regularization * factorOfUser); * Q[k, indexOfItem] += learnRate * (e_ij * factorOfUser - regularization * factorOfItem); * } */ #endregion } // Display the current regularized error see if it converges double e_curr = 0; if (epoch == 0 || epoch == maxEpoch - 1 || epoch % (int)Math.Ceiling(maxEpoch * 0.1) == 4) { Matrix <double> predictedMatrix = R_train_unknown.PointwiseMultiply(P.Multiply(Q)); SparseMatrix correctMatrix = R_train.Matrix; double squaredError = (correctMatrix - predictedMatrix).SquaredSum(); double regularizationPenaty = regularization * (P.SquaredSum() + Q.SquaredSum()); double objective = squaredError + regularizationPenaty; #region Linear implementation /* * double e = 0; * foreach (Tuple<int, int, double> element in R_train.Ratings) * { * int indexOfUser = element.Item1; * int indexOfItem = element.Item2; * double rating = element.Item3; * * e += Math.Pow(rating - P.Row(indexOfUser).DotProduct(Q.Column(indexOfItem)), 2); * * for (int k = 0; k < factorCount; ++k) * { * e += (regularization / 2) * (Math.Pow(P[indexOfUser, k], 2) + Math.Pow(Q[k, indexOfItem], 2)); * } * } */ #endregion // Record the current error e_curr = objective; // Stop the learning if the regularized error falls below a certain threshold if (e_prev - e_curr < 0.001) { Console.WriteLine("Improvment less than 0.001, learning stopped."); break; } e_prev = e_curr; Utils.PrintEpoch("Epoch", epoch, maxEpoch, "Objective cost", objective); } } SparseMatrix R_predicted = new SparseMatrix(R_unknown.UserCount, R_unknown.ItemCount); foreach (var element in R_unknown.Matrix.EnumerateIndexed(Zeros.AllowSkip)) { int indexOfUser = element.Item1; int indexOfItem = element.Item2; double r_predicted = meanOfGlobal + P.Row(indexOfUser) * Q.Column(indexOfItem); if (r_predicted > Config.Ratings.MaxRating) { r_predicted = Config.Ratings.MaxRating; } if (r_predicted < Config.Ratings.MinRating) { r_predicted = Config.Ratings.MinRating; } R_predicted[indexOfUser, indexOfItem] = r_predicted; } return(new DataMatrix(R_predicted)); //return new RatingMatrix(R_unknown.PointwiseMultiply(P.Multiply(Q))); }