///'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' public static void preprocess(Mat imgOriginal, ref Mat imgGrayscale, ref Mat imgThresh) { imgGrayscale = extractValue(imgOriginal); //extract value channel only from original image to get imgGrayscale Mat imgMaxContrastGrayscale = imgGrayscale; //Mat imgMaxContrastGrayscale = maximizeContrast(imgGrayscale); //maximize contrast with top hat and black hat Mat imgBlurred = new Mat(); CvInvoke.GaussianBlur(imgMaxContrastGrayscale, imgBlurred, new Size(GAUSSIAN_BLUR_FILTER_SIZE, GAUSSIAN_BLUR_FILTER_SIZE), 0.6); //gaussian blur //adaptive threshold to get imgThresh CvInvoke.AdaptiveThreshold(imgBlurred, imgThresh, 255.0, AdaptiveThresholdType.GaussianC, ThresholdType.BinaryInv, ADAPTIVE_THRESH_BLOCK_SIZE, ADAPTIVE_THRESH_WEIGHT); MCvScalar tempVal = CvInvoke.Mean(imgBlurred); double average = tempVal.V0; CvInvoke.Threshold(imgBlurred, imgThresh, 0, 255.0, Emgu.CV.CvEnum.ThresholdType.Otsu); CvInvoke.Erode(imgThresh, imgThresh, null, Point.Empty, 1, BorderType.Default, new MCvScalar(0)); CvInvoke.Dilate(imgThresh, imgThresh, null, Point.Empty, 1, BorderType.Default, new MCvScalar(0)); CvInvoke.BitwiseNot(imgThresh, imgThresh); }
private void BubbleDetectBtn_Click(object sender, EventArgs e) { //Applying Operations on transformed Image transformedImage = transformedImage.Resize(400, 400, Emgu.CV.CvEnum.Inter.Linear); Image <Bgr, byte> transCopy = transformedImage.Copy(); Emgu.CV.Util.VectorOfVectorOfPoint qtnVect = new Emgu.CV.Util.VectorOfVectorOfPoint(); Image <Gray, byte> qtnGray = transCopy.Convert <Gray, byte>(); Image <Gray, byte> copyG = qtnGray.Copy(); CvInvoke.GaussianBlur(qtnGray, qtnGray, new Size(5, 5), 0); CvInvoke.AdaptiveThreshold(qtnGray, qtnGray, 255, Emgu.CV.CvEnum.AdaptiveThresholdType.GaussianC, Emgu.CV.CvEnum.ThresholdType.Binary, 55, 9); CvInvoke.BitwiseNot(qtnGray, qtnGray); CvInvoke.FindContours(qtnGray, qtnVect, null, Emgu.CV.CvEnum.RetrType.External, Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxSimple, default); //CIRCLE METHOD List <CircleF> circList = new List <CircleF>(); Emgu.CV.Util.VectorOfVectorOfPoint test = new Emgu.CV.Util.VectorOfVectorOfPoint(); Emgu.CV.Util.VectorOfPoint qtnApprox = new Emgu.CV.Util.VectorOfPoint(); Dictionary <int, double> qtnDict = new Dictionary <int, double>(); if (qtnVect.Size > 0) { for (int i = 0; i < qtnVect.Size; i++) { double area = CvInvoke.ContourArea(qtnVect[i]); if (area > 70) { qtnDict.Add(i, area); } } var item = qtnDict.OrderByDescending(v => v.Value); //.Take(1); Emgu.CV.Util.VectorOfPoint approxList = new Emgu.CV.Util.VectorOfPoint(); foreach (var it in item) { int key = Convert.ToInt32(it.Key.ToString()); double peri = CvInvoke.ArcLength(qtnVect[key], true); CvInvoke.ApproxPolyDP(qtnVect[key], qtnApprox, 0.02 * peri, true); if (qtnApprox.Size == 0) { } else if (qtnApprox.Size > 6) { CircleF circle = CvInvoke.MinEnclosingCircle(qtnVect[key]); Point centre = new Point(); centre.X = (int)circle.Center.X; centre.Y = (int)circle.Center.Y; CvInvoke.Circle(transformedImage, centre, (int)circle.Radius, new MCvScalar(0, 255, 0), 2, Emgu.CV.CvEnum.LineType.Filled, 0); //break; } } MessageBox.Show("Bubbles Detected"); bubbleImage.Image = transformedImage; } }
/// <summary> /// Pass the image through multiple filters and sort contours /// </summary> /// <param name="img">The image that will be proccessed</param> /// <returns>A list of Mat ROIs</returns> private static List <Mat> ImageProccessing(Mat img) { //Resize the image for better uniformitty throughout the code CvInvoke.Resize(img, img, new Size(700, 500)); Mat imgClone = img.Clone(); //Convert the image to grayscale CvInvoke.CvtColor(img, img, ColorConversion.Bgr2Gray); //Blur the image CvInvoke.GaussianBlur(img, img, new Size(5, 5), 8, 8); //Threshold the image CvInvoke.AdaptiveThreshold(img, img, 30, AdaptiveThresholdType.GaussianC, ThresholdType.Binary, 5, 6); //Canny the image CvInvoke.Canny(img, img, 8, 8); //Dilate the canny image CvInvoke.Dilate(img, img, null, new Point(-1, -1), 8, BorderType.Constant, new MCvScalar(0, 255, 255)); //Filter the contours to only find relevent ones List <Mat> foundOutput = FindandFilterContours(imgClone, img); return(foundOutput); }
public void GridDetection() { // convert to gray-scaler image Mat image = originalImage.Mat.Clone(); // blur the image CvInvoke.GaussianBlur(image, image, new Size(11, 11), 0); // threshold the image CvInvoke.AdaptiveThreshold(image, image, 255, AdaptiveThresholdType.MeanC, ThresholdType.Binary, 5, 2); CvInvoke.BitwiseNot(image, image); Mat kernel = new Mat(new Size(3, 3), DepthType.Cv8U, 1); Marshal.Copy(new byte[] { 0, 1, 0, 1, 1, 1, 0, 1, 0 }, 0, kernel.DataPointer, 9); CvInvoke.Dilate(image, image, kernel, new Point(-1, -1), 1, BorderType.Default, new MCvScalar(255)); FindOuterGridByFloorFill(image); CvInvoke.Erode(image, image, kernel, new Point(-1, -1), 1, BorderType.Default, new MCvScalar(255)); ImageShowCase.ShowImage(image, "biggest blob"); VectorOfPointF lines = new VectorOfPointF(); CvInvoke.HoughLines(image, lines, 1, Math.PI / 180, 200); // merging lines PointF[] linesArray = lines.ToArray(); //MergeLines(linesArray, image); lines = RemoveUnusedLine(linesArray); Mat harrisResponse = new Mat(image.Size, DepthType.Cv8U, 1); CvInvoke.CornerHarris(image, harrisResponse, 5); DrawLines(lines.ToArray(), image); ImageShowCase.ShowImage(image, "corners"); }
private void PreProcessImage() { if (ImagesPaths.Count < 1) { MessageBox.Show("No Image To Process!"); return; } for (int index = 0; index <= nImages - 1; index++) { Mat GrayImage = ImagesReadCV[index].Clone(); Mat BlurredImage = GrayImage.Clone(); Mat AdaptThresh = BlurredImage.Clone(); if (GrayImage.NumberOfChannels != 3) { MessageBox.Show(@"Invalid Number of Channels within the Image!\nExpect 3 but got" + GrayImage.NumberOfChannels); return; } CvInvoke.CvtColor(ImagesReadCV[index], GrayImage, ColorConversion.Bgr2Gray); CvInvoke.GaussianBlur(GrayImage, BlurredImage, new Size(3, 3), 1); CvInvoke.AdaptiveThreshold(BlurredImage, AdaptThresh, 255, AdaptiveThresholdType.GaussianC, ThresholdType.BinaryInv, 11, 2); ImagesReadCV[index] = AdaptThresh; } MessageBox.Show("Done!"); ReloadImageBox(); }
private void HandleGrab(object sender, EventArgs e) { Mat image = new Mat(); if (capture.IsOpened) { capture.Retrieve(image); } if (image.IsEmpty) { return; } Mat grayImg = image.Clone(); CvInvoke.CvtColor(image, grayImg, ColorConversion.Bgr2Gray); CvInvoke.AdaptiveThreshold(grayImg, grayImg, 255, AdaptiveThresholdType.MeanC, ThresholdType.BinaryInv, 21, 11); VectorOfInt ids = new VectorOfInt(); VectorOfVectorOfPointF corners = new VectorOfVectorOfPointF(); VectorOfVectorOfPointF rejected = new VectorOfVectorOfPointF(); ArucoInvoke.DetectMarkers(image, dico, corners, ids, arucoParam, rejected); if (ids.Size > 0) { ArucoInvoke.DrawDetectedMarkers(image, corners, ids, new MCvScalar(0, 0, 255)); } CvInvoke.Imshow("Original", image); CvInvoke.Imshow("Gray", grayImg); }
public static Mat PreprocessImageForTesseract(Mat img) { int scalePercent = 18; int newWidth = (int)img.Width * scalePercent / 100; int newHeight = (int)img.Height * scalePercent / 100; CvInvoke.Resize(img, img, new System.Drawing.Size(newWidth, newHeight), interpolation: Inter.Area); img = ImageProcessor.ApplyBlur(img, 0, 3); Mat output = new Mat(img.Size, DepthType.Cv8U, 3); CvInvoke.CvtColor(img, img, ColorConversion.Bgr2Gray); //CvInvoke.EqualizeHist(img, img); CvInvoke.BitwiseNot(img, img); //img = ImageProcessor.CannyEdgeDetection(img, 20, 20); //img = ImageProcessor.ApplyErosion(img, 3); //CvInvoke.GaussianBlur(img, img, new System.Drawing.Size(3, 3), 0); CvInvoke.AdaptiveThreshold(img, img, 255, AdaptiveThresholdType.GaussianC, ThresholdType.Binary, 11, 2); CvInvoke.Threshold(img, output, 0, 255, ThresholdType.Otsu);//double ret = //output = ImageProcessor.ApplyErosion(output, 3); //CvInvoke.Threshold(output, output, ret, 255, ThresholdType.Binary); var kernel = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, new System.Drawing.Size(2, 2), new System.Drawing.Point(-1, -1)); CvInvoke.Dilate(output, output, kernel, new System.Drawing.Point(-1, -1), 2, Emgu.CV.CvEnum.BorderType.Constant, default(MCvScalar)); //output = ImageProcessor.ApplyDilation(output, 7); //CvInvoke.Invert() return(output); }
private void ImageThreshold() { if (grayImg != null) { try { if (cboAdapEn.Checked) { CvInvoke.AdaptiveThreshold(grayImg, binImg, 255, (AdaptiveThresholdType)cboAdapType.SelectedItem, (ThresholdType)comboBox1.SelectedItem, Convert.ToInt32((2 * tbrMSize.Value) + 1), //require only Odd number and > 0 tbrMValue.Value); } else { CvInvoke.Threshold(grayImg, binImg, th, 255, (Emgu.CV.CvEnum.ThresholdType)comboBox1.SelectedItem); } } catch (Exception ex) { MessageBox.Show(ex.Message); return; } pboGray.Image = binImg.ToBitmap(pboGray.Width, pboGray.Height); } }
public static Image <Gray, byte> TresholdingAdative(Image <Gray, byte> image, int blockSize = 11) { var tres = image.CopyBlank(); CvInvoke.AdaptiveThreshold(image, tres, 255, AdaptiveThresholdType.GaussianC, ThresholdType.Binary, blockSize, -1); return(tres); }
public void HandleWebcamQueryFrame(object sender, EventArgs e) { if (webcam.IsOpened) { webcam.Retrieve(image); } if (image.IsEmpty) { return; } imageGray = image.Clone(); CvInvoke.CvtColor(image, imageGray, ColorConversion.Bgr2Gray); if (imageGray.IsEmpty) { return; } frontFaces = frontFaceCascadeClassifier.DetectMultiScale(image: imageGray, scaleFactor: 1.1, minNeighbors: 5, minSize: new Size(MIN_FACE_SIZE, MIN_FACE_SIZE), maxSize: new Size(MAX_FACE_SIZE, MAX_FACE_SIZE)); Debug.Log(frontFaces.Length.ToString()); for (int i = 0; i < frontFaces.Length; i++) { CvInvoke.Rectangle(image, frontFaces[i], new MCvScalar(0, 180, 0), 0); Debug.Log("i: " + i.ToString()); } //Nouvelle matrice qui focus sur le premier visage if (frontFaces.Length > 0) { image = new Mat(image, frontFaces[0]); } DisplayFrame(image); //Seuillage adaptatif Mat hierarchy = new Mat(); CvInvoke.AdaptiveThreshold(imageGray, imageGray, maxValue, AdaptiveThresholdType.MeanC, ThresholdType.Binary, blockSize, diviser); CvInvoke.FindContours(imageGray, allContours, hierarchy, RetrType.List, ChainApproxMethod.ChainApproxNone); desiredContours.Clear(); for (int i = 0; i < allContours.Size; i++) { if (CvInvoke.ContourArea(allContours[i]) > contourSizeMin && CvInvoke.ContourArea(allContours[i]) < contourSizeMax) { desiredContours.Push(allContours[i]); } } CvInvoke.DrawContours(image, desiredContours, -1, new MCvScalar(200, 100, 200), 2); //RotatedRect rotatedRect; //rotatedRect = CvInvoke.MinAreaRect(biggestContour); //rotatedRect.GetVertices(); CvInvoke.Imshow("Webcam view Normal", image); CvInvoke.Imshow("Webcam view Gray", imageGray); }
private Image <Gray, byte> preprocess(Image <Gray, byte> input) { Image <Gray, byte> copy = input.Copy(); CvInvoke.Blur(copy, copy, new Size(5, 5), new Point(-1, -1)); CvInvoke.AdaptiveThreshold(copy, copy, 255, Emgu.CV.CvEnum.AdaptiveThresholdType.GaussianC, Emgu.CV.CvEnum.ThresholdType.BinaryInv, 11, 2); return(copy); }
public static Image <Gray, Byte> GetAdaptiveThresholdedFrame(Image <Bgr, Byte> frame) { var result = new Mat(); CvInvoke.CvtColor(frame, result, ColorConversion.Bgr2Gray); CvInvoke.AdaptiveThreshold(result, result, 255, AdaptiveThresholdType.GaussianC, ThresholdType.Binary, 15, -10); return(result.ToImage <Gray, Byte>()); }
private void preencherImagemBinariaSemPlanoDeFundo() { mCopiaImagemPlanoDeFundo = mImagemDoPlanoDeFundo.Clone(); CvInvoke.AbsDiff(mImagemColorida, mCopiaImagemPlanoDeFundo, mImagemSemPlanoDeFundo); CvInvoke.CvtColor(mImagemSemPlanoDeFundo, mImagemCinzaSemPlanoDeFundo, ColorConversion.Rgb2Gray); // CvInvoke.Threshold(mImagemCinzaSemPlanoDeFundo, mImagemBinariaSemPlanoDeFundo, ParametrosConstantes.LimiarTransformacaoParaCinza, //ParametrosConstantes.MaximoLimiarTransformacaoParaCinza, ThresholdType.Binary); CvInvoke.AdaptiveThreshold(mImagemCinzaSemPlanoDeFundo, mImagemBinariaSemPlanoDeFundo, ParametrosConstantes.MaximoLimiarTransformacaoParaCinza, AdaptiveThresholdType.GaussianC, ThresholdType.Binary, 11, 3); }
private void button1_Click(object sender, EventArgs e) { Image <Gray, byte> img = new Bitmap(PbSegmentation.Image).ToImage <Gray, byte>(); CvInvoke.AdaptiveThreshold(img, img, 255, Emgu.CV.CvEnum.AdaptiveThresholdType.GaussianC, Emgu.CV.CvEnum.ThresholdType.Binary, 11, 5); PbSegmentation.Image = img.ToBitmap(); Tools.Histogram(ChartSegmentation, (Bitmap)PbSegmentation.Image); }
private void button3_Click(object sender, EventArgs e) { Image <Gray, Byte> imgbuff = new Image <Gray, byte>(imagetest.Width, imagetest.Height); CvInvoke.AdaptiveThreshold(imagetest, imgbuff, 255, AdaptiveThresholdType.MeanC, ThresholdType.BinaryInv, 3, 0); imagetest = imgbuff; imageBox2.Image = imagetest; }
private string[] ProcessSudokuImg(string fileName) // --> Wydzielic do innej klasy! { int height = 450; int width = 450; string[] digits = new string[81]; Image <Bgr, byte> image = new Image <Bgr, byte>(fileName); image = image.Resize(width, height, Emgu.CV.CvEnum.Inter.Linear); Image <Gray, byte> grayImage = image.Convert <Gray, byte>(); Image <Gray, byte> buffer = grayImage.Copy(); CvInvoke.GaussianBlur(grayImage, buffer, new System.Drawing.Size(5, 5), 1); grayImage = buffer; CvInvoke.AdaptiveThreshold(grayImage, buffer, 255, Emgu.CV.CvEnum.AdaptiveThresholdType.GaussianC, Emgu.CV.CvEnum.ThresholdType.Binary, 5, 2); grayImage = buffer; // Split image into 81 parts Image <Gray, byte>[] fields = new Image <Gray, byte> [81]; for (int i = 0; i < 9; i++) { for (int j = 0; j < 9; j++) { int border = 5; System.Drawing.Rectangle rect = new System.Drawing.Rectangle(i * (width / 9) + border, j * (height / 9) + border, (width / 9) - 2 * border, (height / 9) - 2 * border); grayImage.ROI = rect; var index = i * 9 + j; fields[index] = grayImage.CopyBlank(); grayImage.CopyTo(fields[index]); grayImage.ROI = System.Drawing.Rectangle.Empty; } } // Recognize digits using (TesseractEngine engine = new TesseractEngine(@"./tessdata", "eng", EngineMode.Default)) { engine.SetVariable("tessedit_char_whitelist", "0123456789"); int i = 0; //iterator foreach (var field in fields) { Page page = engine.Process(field.ToBitmap(), PageSegMode.SingleChar); string result = page.GetText(); page.Dispose(); digits[i++] = result.Trim(); field.Dispose(); } } image.Dispose(); grayImage.Dispose(); buffer.Dispose(); return(digits); }
public static void preprocess(Mat imgOriginal, Mat imgGrayscale, Mat imgThresh)//przerobic na kontruktor?????? { imgGrayscale = extractValue(imgOriginal); Mat imgMaxContrastGrayscale = maximizeContrast(imgGrayscale); Mat imgBlurred = new Mat(); CvInvoke.GaussianBlur(imgMaxContrastGrayscale, imgBlurred, new Size(GAUSSIAN_BLUR_FILTER_SIZE, GAUSSIAN_BLUR_FILTER_SIZE), 0); CvInvoke.AdaptiveThreshold(imgBlurred, imgThresh, 255.0, AdaptiveThresholdType.GaussianC, ThresholdType.BinaryInv, ADAPTIVE_THRESH_BLOCK_SIZE, ADAPTIVE_THRESH_WEIGHT); }
/// <summary> /// Processes the infrared frame: /// 1. Thesholds the infrared image /// 2. Opens the thesholded image /// 3. Tracks refletive markers in the thresholded image. /// 4. Show infrared/thresholded image if mainwindow is present /// </summary> /// <param name="infraredFrame"> the InfraredFrame image </param> /// <param name="infraredFrameDataSize">Size of the InfraredFrame image data</param> private void ProcessIRFrame(Mat infraredFrameOrg, FrameDimension infraredFrameDimension, Mat depthFrame) { // init threshold image variable // Image<Gray, Byte> thresholdImg = new Image<Gray, Byte>(infraredFrameDimension.Width, infraredFrameDimension.Height); using (Mat thresholdImg = new Mat(), infraredFrameROI = new Mat(infraredFrameOrg, mask)) { CvInvoke.Normalize(infraredFrameROI, thresholdImg, 0, 255, NormType.MinMax, DepthType.Cv8U); CvInvoke.AdaptiveThreshold(thresholdImg, thresholdImg, 255, AdaptiveThresholdType.GaussianC, ThresholdType.Binary, 13, -20); // perform opening CvInvoke.MorphologyEx(thresholdImg, thresholdImg, MorphOp.Dilate, kernel, new System.Drawing.Point(-1, -1), 2, BorderType.Constant, new MCvScalar(1.0)); CvInvoke.MorphologyEx(thresholdImg, thresholdImg, MorphOp.Erode, kernel, new System.Drawing.Point(-1, -1), 1, BorderType.Constant, new MCvScalar(1.0)); // find controids of reflective surfaces and mark them on the image double[][] centroidPoints = GetvisibleData(thresholdImg, depthFrame); TrackedData(centroidPoints); // only generate writeable bitmap if the mainwindow is shown if (this.showWindow) { // copy the processed image back into a writeable bitmap and dispose the EMGU image if (thresholdedClicked) { using (DrawTrackedData(thresholdImg)) { SetThresholdedInfraredImage(thresholdImg, infraredFrameDimension); } } else { using (Mat colImg = DrawTrackedData(infraredFrameOrg)) { // CvInvoke.Normalize(colImg, colImg, 0, 255, NormType.MinMax, DepthType.Cv8U); SetInfraredImage(colImg, infraredFrameDimension); } } } // cleanup } }
public static Bitmap getBinarizedBitmap(Bitmap bitmap) { var image = new Image <Bgr, byte>(bitmap); var uimage = new UMat(); var pyrDown = new UMat(); var imageBynarize = image.Convert <Gray, Byte>(); CvInvoke.CvtColor(image, uimage, ColorConversion.Bgr2Gray); CvInvoke.PyrDown(uimage, pyrDown); CvInvoke.PyrUp(pyrDown, uimage); CvInvoke.AdaptiveThreshold(imageBynarize, imageBynarize, 255, AdaptiveThresholdType.GaussianC, ThresholdType.Binary, 255, 16); return(imageBynarize.ToBitmap(bitmap.Width, bitmap.Height)); }
private void GetImageEdges() { CvInvoke.MedianBlur(workImage, workImage, 3); // ThresholdType.Binary, 11, 2 CvInvoke.AdaptiveThreshold(workImage, workImage, 255, AdaptiveThresholdType.GaussianC, ThresholdType.BinaryInv, 101, 3); CvInvoke.MedianBlur(workImage, workImage, 3); workImage = workImage.MorphologyEx(MorphOp.Dilate, kernel, new Point(-1, -1), 1, BorderType.Default, new MCvScalar(1.0)); CvInvoke.Canny(workImage, workImage, 80.0, 120.0); }
// Update is called once per frame void Update() { fluxVideo.Grab(); Mat grey = new Mat(); CvInvoke.CvtColor(image, grey, ColorConversion.Bgr2Gray); CvInvoke.AdaptiveThreshold(grey, grey, 255, AdaptiveThresholdType.GaussianC, ThresholdType.BinaryInv, 21, 11); CvInvoke.FindContours(grey, contours, m, Emgu.CV.CvEnum.RetrType.External, Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxSimple); for (int i = 0; i < contours.Size; i++) { double perimeter = CvInvoke.ArcLength(contours[i], true); CvInvoke.ApproxPolyDP(contours[i], approx, 0.04 * perimeter, true); if (approx.Size == 4) { if (CvInvoke.ContourArea(contours[i]) > 300) { var rect = CvInvoke.BoundingRectangle(approx); if (rect.Height > 0.95 * rect.Width || rect.Height < 0.95 * rect.Width) { candidates.Push(approx); CvInvoke.DrawContours(image, contours, i, new MCvScalar(0, 255, 0), 4); CvInvoke.Rectangle(image, rect, new MCvScalar(255, 0, 0)); } } } } for (int i = 0; i < candidates.Size; i++) { System.Drawing.PointF[] pts = new System.Drawing.PointF[4]; pts[0] = new System.Drawing.PointF(0, 0); pts[1] = new System.Drawing.PointF(64 - 1, 0); pts[2] = new System.Drawing.PointF(64 - 1, 64 - 1); pts[3] = new System.Drawing.PointF(0, 64 - 1); VectorOfPointF perfect = new VectorOfPointF(pts); System.Drawing.PointF[] sample_pts = new System.Drawing.PointF[4]; for (int ii = 0; ii < 4; ii++) { sample_pts[ii] = new System.Drawing.PointF(candidates[i][ii].X, candidates[i][ii].Y); } VectorOfPointF sample = new VectorOfPointF(sample_pts); var tf = CvInvoke.GetPerspectiveTransform(sample, perfect); Mat warped = new Mat(); CvInvoke.WarpPerspective(image, warped, tf, new System.Drawing.Size(64, 64)); CvInvoke.Imshow("yo", warped); } CvInvoke.WaitKey(24); }
public static Image <Gray, byte> AdaptiveThreshold ( this Image <Gray, byte> inImage , double maxVal = 250 , AdaptiveThresholdType adaptiveThresholdType = AdaptiveThresholdType.MeanC , ThresholdType thresholdType = ThresholdType.BinaryInv , int blockSize = 39 , double param1 = 4) { var outImage = inImage.Copy(); CvInvoke.AdaptiveThreshold (GaussBlur(inImage), outImage, maxVal, adaptiveThresholdType, thresholdType, blockSize, param1); return(outImage); }
private void Button3_Click(object sender, EventArgs e) { imgGray = img.Convert <Gray, Byte>(); //Converted to blurred CvInvoke.GaussianBlur(imgGray, imgGray, new Size(5, 5), 0); // using adaptive threshhold CvInvoke.AdaptiveThreshold(imgGray, imgGray, 255, Emgu.CV.CvEnum.AdaptiveThresholdType.GaussianC, Emgu.CV.CvEnum.ThresholdType.BinaryInv, 75, 10); CvInvoke.Canny(imgGray, cannyImage, 75, 200); cannyImage.ConvertTo(imgGray, Emgu.CV.CvEnum.DepthType.Default, -1, 0); Emgu.CV.Util.VectorOfVectorOfPoint vector = new Emgu.CV.Util.VectorOfVectorOfPoint(); CvInvoke.FindContours(cannyImage, vector, null, Emgu.CV.CvEnum.RetrType.External, Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxSimple); CvInvoke.DrawContours(img, vector, -1, new MCvScalar(240, 0, 159), 3); MessageBox.Show("Question Part Detected"); sheetDetectImage.Image = img; }
private static Image <Gray, byte> getBinarizedImage(Bitmap bitmap) { var image = new Image <Bgr, byte>(bitmap); var uimage = new UMat(); var pyrDown = new UMat(); CvInvoke.CvtColor(image, uimage, ColorConversion.Bgr2Gray); CvInvoke.PyrDown(uimage, pyrDown); CvInvoke.PyrUp(pyrDown, uimage); var imageBynarize = image.Convert <Gray, Byte>().PyrUp().PyrDown(); CvInvoke.AdaptiveThreshold(imageBynarize, imageBynarize, 255, AdaptiveThresholdType.MeanC, ThresholdType.Binary, 115, 4); CvInvoke.Threshold(image, image, 200, 255, ThresholdType.Otsu); return(imageBynarize); }
private void binarizeToolStripMenuItem_Click(object sender, EventArgs e) { imgGray = imgInput.Convert <Gray, byte>(); pictureBox1.Image = imgGray.ToBitmap(); // Binarization imgBinarized = new Image <Gray, byte>(imgGray.Width, imgGray.Height, new Gray(0)); //CvInvoke.Threshold(imgGray, imgBinarized, 50, 255, Emgu.CV.CvEnum.ThresholdType.Binary); //pictureBox2.Image = imgBinarized.ToBitmap(); // adaptive threshold CvInvoke.AdaptiveThreshold(imgGray, imgBinarized, 255, Emgu.CV.CvEnum.AdaptiveThresholdType.GaussianC, Emgu.CV.CvEnum.ThresholdType.Binary, 5, 0.0); pictureBox2.Image = imgBinarized.ToBitmap(); }
private static Mat Preprocess(Mat image, bool isPerfectShape) { Mat outerBox = new Mat(image.Size, DepthType.Cv8U, 3); CvInvoke.GaussianBlur(image, image, new Size(7, 7), 0); CvInvoke.AdaptiveThreshold(image, outerBox, 255, AdaptiveThresholdType.MeanC, ThresholdType.Binary, 5, 2); CvInvoke.BitwiseNot(outerBox, outerBox); if (!isPerfectShape || true) { var element = CvInvoke.GetStructuringElement(ElementShape.Cross, new Size(3, 3), new Point(-1, -1)); CvInvoke.Dilate(outerBox, outerBox, element, new Point(-1, -1), 1, BorderType.Default, default(MCvScalar)); CvInvoke.Erode(outerBox, outerBox, element, new Point(-1, -1), 1, BorderType.Default, default(MCvScalar)); } return(outerBox); }
///'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' public static void preprocess(Mat imgOriginal, ref Mat imgGrayscale, ref Mat imgThresh) { imgGrayscale = extractValue(imgOriginal); //extract value channel only from original image to get imgGrayscale Mat imgMaxContrastGrayscale = maximizeContrast(imgGrayscale); //maximize contrast with top hat and black hat Mat imgBlurred = new Mat(); CvInvoke.GaussianBlur(imgMaxContrastGrayscale, imgBlurred, new Size(GAUSSIAN_BLUR_FILTER_SIZE, GAUSSIAN_BLUR_FILTER_SIZE), 0); //gaussian blur //adaptive threshold to get imgThresh CvInvoke.AdaptiveThreshold(imgBlurred, imgThresh, 255.0, AdaptiveThresholdType.GaussianC, ThresholdType.BinaryInv, ADAPTIVE_THRESH_BLOCK_SIZE, ADAPTIVE_THRESH_WEIGHT); }
private void AdaptiveThresholdingBarButtonItem_ItemClick(object sender, DevExpress.XtraBars.ItemClickEventArgs e) { Directory.CreateDirectory(@"D:\Eighth Semester\HandVeinPattern\\RuntimeDirectory"); Details.adaptivethreshold = new Mat(); CvInvoke.AdaptiveThreshold(Details.whitebalance, Details.adaptivethreshold, 255, AdaptiveThresholdType.GaussianC, ThresholdType.Binary, 11, -3); Step3PictureEdit.Image = Details.adaptivethreshold.Bitmap; CvInvoke.Imwrite(@"D:\Eighth Semester\HandVeinPattern\RuntimeDirectory\AdaptiveThreshold.jpg", Details.adaptivethreshold); ImageProcessingProgressBarControl.PerformStep(); ImageProcessingProgressBarControl.Update(); }
public Bitmap AdaptiveBinarization(string imageSavePath, int sizeOfNbPixels, int subFromMean) { Mat img = CvInvoke.Imread(imageSavePath, 0); Mat output = new Mat(); CvInvoke.AdaptiveThreshold(img, output, 255, AdaptiveThresholdType.GaussianC, ThresholdType.Binary, sizeOfNbPixels, subFromMean); CvInvoke.Imshow("src", img); CvInvoke.Imshow("Gaussian", output); Bitmap newMap = output.ToBitmap(); newMap.Save("./Tesseract Ocr/testImage111.png"); return(newMap); }
/// <summary> /// Pass the image through multiple filters and sort contours /// </summary> /// <param name="img">The image that will be proccessed</param> /// <returns>A list of Mat ROIs</returns> private static Mat ImageProccessing(Mat img) { //Resize the image for better uniformitty throughout the code CvInvoke.Resize(img, img, new System.Drawing.Size(600, 800)); Mat imgClone = img.Clone(); //Convert the image to grayscale CvInvoke.CvtColor(img, img, ColorConversion.Bgr2Gray); //Blur the image CvInvoke.GaussianBlur(img, img, new System.Drawing.Size(3, 3), 4, 4); CvInvoke.Imshow("GaussianBlur", img); CvInvoke.WaitKey(0); //Threshold the image CvInvoke.AdaptiveThreshold(img, img, 100, AdaptiveThresholdType.GaussianC, ThresholdType.BinaryInv, 5, 6); CvInvoke.Imshow("Thereshold", img); CvInvoke.WaitKey(0); /* //Canny the image * CvInvoke.Canny(img, img, 75, 100); * * CvInvoke.Imshow("Canny", img); * CvInvoke.WaitKey(0);*/ /* //Dilate the canny image * CvInvoke.Dilate(img, img, null, new System.Drawing.Point(-1, -1), 8, BorderType.Constant, new MCvScalar(0, 255, 255)); * * CvInvoke.Imshow("Dilate", img); * CvInvoke.WaitKey(0);*/ //Filter the contours to only find relevent ones /* List<Mat> foundOutput = FindandFilterContours(imgClone, img); * * for (int i = 0; i < foundOutput.Count; i++) * { * CvInvoke.Imshow("Found Output", foundOutput[i]); * CvInvoke.WaitKey(0); * }*/ return(img); }