public DMesh3 CreateMesh(List <Vector3d> path, List <Polygon2d> polys, VectorArray3d seam) { // Ignore first and last path/polys for mesh generation. // We just need the extra path positions to calculate a // continuous tangent at the seams. List <Vector3d> pathXZ = new List <Vector3d>(); for (int i = 0; i < path.Count; i++) { pathXZ.Add(new Vector3d(path[i].x, 0, path[i].z)); } int nVerts = path.Count - 2; int nPolys = polys.Count - 2; // Same VertexCount for all Polygons. int nSlices = polys[0].VertexCount; int nPolySize = nSlices + 1; int nVecs = nVerts * nPolySize; vertices = new VectorArray3d(nVecs); normals = new VectorArray3f(nVecs); uv = new VectorArray2f(nVecs); int quad_strips = nVerts - 1; int nSpanTris = quad_strips * (2 * nSlices); triangles = new IndexArray3i(nSpanTris); Frame3f fCur = new Frame3f(frame); double pathLength = CurveUtils.ArcLength(path.GetRange(1, nVerts)); double accum_path_u = 0; for (int ri = 0; ri < nPolys; ++ri) { int si = ri + 1; // actual path/polys index for mesh Vector3d tangent = CurveUtils.GetTangent(pathXZ, si); fCur.Origin = (Vector3f)path[si]; fCur.AlignAxis(2, (Vector3f)tangent); int nStartR = ri * nPolySize; double accum_ring_v = 0; bool copy = ri == nPolys - 1; bool paste = ri == 0; for (int j = 0; j < nPolySize; ++j) { int k = nStartR + j; Vector2d pv = polys[si].Vertices[j % nSlices]; Vector2d pvNext = polys[si].Vertices[(j + 1) % nSlices]; Vector3d v = fCur.FromPlaneUV((Vector2f)pv, 2); vertices[k] = v; Vector3f n = (Vector3f)(v - fCur.Origin).Normalized; normals[k] = n; uv[k] = new Vector2f(accum_path_u, accum_ring_v); accum_ring_v += (pv.Distance(pvNext) / polys[si].ArcLength); if (copy) { Seam[j] = vertices[k]; } else if (paste) { vertices[k] = seam[j]; } } double d = path[si].Distance(path[si + 1]); accum_path_u += d / pathLength; } int nStop = nVerts - 1; int ti = 0; for (int ri = 0; ri < nStop; ++ri) { int r0 = ri * nPolySize; int r1 = r0 + nPolySize; for (int k = 0; k < nPolySize - 1; ++k) { triangles.Set(ti++, r0 + k, r0 + k + 1, r1 + k + 1, Clockwise); triangles.Set(ti++, r0 + k, r1 + k + 1, r1 + k, Clockwise); } } return(MakeDMesh()); }
override public void Generate() { if (Polygon == null) { Polygon = Polygon2d.MakeCircle(1.0f, 8); } int Slices = Polygon.VertexCount; int nRings = Vertices.Count; int nRingSize = (NoSharedVertices) ? Slices + 1 : Slices; int nCapVertices = (NoSharedVertices) ? Slices + 1 : 1; if (Capped == false) { nCapVertices = 0; } vertices = new VectorArray3d(nRings * nRingSize + 2 * nCapVertices); uv = new VectorArray2f(vertices.Count); normals = new VectorArray3f(vertices.Count); int nSpanTris = (Vertices.Count - 1) * (2 * Slices); int nCapTris = (Capped) ? 2 * Slices : 0; triangles = new IndexArray3i(nSpanTris + nCapTris); Frame3f fCur = new Frame3f(Frame); Vector3D dv = CurveUtils.GetTangent(Vertices, 0);; fCur.Origin = (Vector3F)Vertices[0]; fCur.AlignAxis(2, (Vector3F)dv); Frame3f fStart = new Frame3f(fCur); // generate tube for (int ri = 0; ri < nRings; ++ri) { // propagate frame if (ri != 0) { Vector3D tan = CurveUtils.GetTangent(Vertices, ri); fCur.Origin = (Vector3F)Vertices[ri]; if (ri == 11) { dv = tan; } fCur.AlignAxis(2, (Vector3F)tan); } float uv_along = (float)ri / (float)(nRings - 1); // generate vertices int nStartR = ri * nRingSize; for (int j = 0; j < nRingSize; ++j) { float uv_around = (float)j / (float)(nRings); int k = nStartR + j; Vector2D pv = Polygon.Vertices[j % Slices]; Vector3D v = fCur.FromFrameP((Vector2F)pv, 2); vertices[k] = v; uv[k] = new Vector2F(uv_along, uv_around); Vector3F n = (Vector3F)(v - fCur.Origin).Normalized; normals[k] = n; } } // generate triangles int ti = 0; for (int ri = 0; ri < nRings - 1; ++ri) { int r0 = ri * nRingSize; int r1 = r0 + nRingSize; for (int k = 0; k < nRingSize - 1; ++k) { triangles.Set(ti++, r0 + k, r0 + k + 1, r1 + k + 1, Clockwise); triangles.Set(ti++, r0 + k, r1 + k + 1, r1 + k, Clockwise); } if (NoSharedVertices == false) // close disc if we went all the way { triangles.Set(ti++, r1 - 1, r0, r1, Clockwise); triangles.Set(ti++, r1 - 1, r1, r1 + nRingSize - 1, Clockwise); } } if (Capped) { // add endcap verts int nBottomC = nRings * nRingSize; vertices[nBottomC] = fStart.Origin; uv[nBottomC] = new Vector2F(0.5f, 0.5f); normals[nBottomC] = -fStart.Z; startCapCenterIndex = nBottomC; int nTopC = nBottomC + 1; vertices[nTopC] = fCur.Origin; uv[nTopC] = new Vector2F(0.5f, 0.5f); normals[nTopC] = fCur.Z; endCapCenterIndex = nTopC; if (NoSharedVertices) { // duplicate first loop and make a fan w/ bottom-center int nExistingB = 0; int nStartB = nTopC + 1; for (int k = 0; k < Slices; ++k) { vertices[nStartB + k] = vertices[nExistingB + k]; uv[nStartB + k] = (Vector2F)Polygon.Vertices[k].Normalized; normals[nStartB + k] = normals[nBottomC]; } append_disc(Slices, nBottomC, nStartB, true, Clockwise, ref ti); // duplicate second loop and make fan int nExistingT = nRingSize * (nRings - 1); int nStartT = nStartB + Slices; for (int k = 0; k < Slices; ++k) { vertices[nStartT + k] = vertices[nExistingT + k]; uv[nStartT + k] = (Vector2F)Polygon.Vertices[k].Normalized; normals[nStartT + k] = normals[nTopC]; } append_disc(Slices, nTopC, nStartT, true, !Clockwise, ref ti); } else { append_disc(Slices, nBottomC, 0, true, Clockwise, ref ti); append_disc(Slices, nTopC, nRingSize * (nRings - 1), true, !Clockwise, ref ti); } } }