// ^ This is a lie: The token is actually int, but that would cause a name collision. // Since BrickColors are written as ints, the IntToken class will try to redirect // to this handler if it believes that its representing a BrickColor. public bool ReadProperty(Property prop, XmlNode token) { if (XmlPropertyTokens.ReadPropertyGeneric(token, out int value)) { BrickColor brickColor = BrickColor.FromNumber(value); prop.XmlToken = "BrickColor"; prop.Value = brickColor; return(true); } return(false); }
private static Instance Reflect_XML(XmlNode node, Type objType) { if (!typeof(Instance).IsAssignableFrom(objType)) { throw new Exception("'T' must be an Instance."); } Instance obj = (Instance)Activator.CreateInstance(objType); List <XmlNode> children = new List <XmlNode>(); XmlNode properties = null; foreach (XmlNode child in node.ChildNodes) { if (child.Name == "Properties") { properties = child; } else if (child.Name == "Item") { children.Add(child); } } if (properties != null) { foreach (XmlNode property in properties.ChildNodes) { string propertyName = property.Attributes.GetNamedItem("name").Value; propertyName = propertyName.Replace(" ", "_"); FieldInfo field = objType.GetField(propertyName, fieldInfoFlags); if (field != null && property.FirstChild != null) { string propertyType = property.Name; object value = null; string sValue = property.FirstChild.Value; if (propertyType == "string") { value = sValue; } else if (propertyType == "float") { value = Format.ParseFloat(sValue); } else if (propertyType == "double") { value = Format.ParseDouble(sValue); } else if (propertyType == "int") { value = Format.ParseInt(sValue); } else if (propertyType == "CoordinateFrame") { value = CFrame.FromXml(property); } else if (propertyType == "Vector3") { value = new Vector3(property); } else if (propertyType == "Content") { value = property.InnerText; } if (propertyType == "token") { Type fieldType = field.FieldType; if (fieldType.IsEnum) { int index = int.Parse(sValue); value = Enum.ToObject(fieldType, index); } } else if (propertyType == "Color3uint8") { uint rgb = uint.Parse(sValue); int r = (int)(rgb / 65536) % 256; int g = (int)(rgb / 256) % 256; int b = (int)(rgb % 256); value = Color.FromArgb(r, g, b); } if (value != null) { if (field.FieldType == typeof(BrickColor)) { int brickColorId = (int)value; value = BrickColor.FromNumber(brickColorId); } field.SetValue(obj, value); } } } } foreach (XmlNode child in children) { XmlNode classNameNode = child.Attributes.GetNamedItem("class"); if (classNameNode != null) { Type classType = GetClassType(classNameNode.Value); if (classType != null) { Instance childObj = Reflect_XML(child, classType); childObj.Parent = obj; } } } return(obj); }
public void Load(BinaryRobloxFileReader reader) { BinaryRobloxFile file = reader.File; File = file; ClassIndex = reader.ReadInt32(); Name = reader.ReadString(); byte propType = reader.ReadByte(); Type = (PropertyType)propType; INST inst = file.Classes[ClassIndex]; ClassName = inst.ClassName; var ids = inst.InstanceIds; int instCount = inst.NumInstances; var props = new Property[inst.NumInstances]; for (int i = 0; i < instCount; i++) { int id = ids[i]; Instance instance = file.Instances[id]; if (instance == null) { if (RobloxFile.LogErrors) { Console.Error.WriteLine($"PROP: No instance @{id} for property {ClassName}.{Name}"); } continue; } Property prop = new Property(instance, this); props[i] = prop; instance.AddProperty(ref prop); } // Setup some short-hand functions for actions used during the read procedure. var readInts = new Func <int[]>(() => reader.ReadInts(instCount)); var readFloats = new Func <float[]>(() => reader.ReadFloats(instCount)); var readProperties = new Action <Func <int, object> >(read => { for (int i = 0; i < instCount; i++) { var prop = props[i]; if (prop == null) { continue; } prop.Value = read(i); } }); switch (Type) { case PropertyType.String: readProperties(i => { string value = reader.ReadString(); // Leave an access point for the original byte sequence, in case this is a BinaryString. // This will allow the developer to read the sequence without any mangling from C# strings. byte[] buffer = reader.GetLastStringBuffer(); props[i].RawBuffer = buffer; // Check if this is going to be casted as a BinaryString. // BinaryStrings should use a type of byte[] instead. switch (Name) { case "Tags": case "AttributesSerialize": return(buffer); default: { Property prop = props[i]; Instance instance = prop.Instance; Type instType = instance.GetType(); var member = ImplicitMember.Get(instType, Name); if (member != null) { object result = value; Type memberType = member.MemberType; if (memberType == typeof(byte[])) { result = buffer; } return(result); } return(value); } } }); break; case PropertyType.Bool: readProperties(i => reader.ReadBoolean()); break; case PropertyType.Int: int[] ints = readInts(); readProperties(i => ints[i]); break; case PropertyType.Float: float[] floats = readFloats(); readProperties(i => floats[i]); break; case PropertyType.Double: readProperties(i => reader.ReadDouble()); break; case PropertyType.UDim: float[] UDim_Scales = readFloats(); int[] UDim_Offsets = readInts(); readProperties(i => { float scale = UDim_Scales[i]; int offset = UDim_Offsets[i]; return(new UDim(scale, offset)); }); break; case PropertyType.UDim2: float[] UDim2_Scales_X = readFloats(), UDim2_Scales_Y = readFloats(); int[] UDim2_Offsets_X = readInts(), UDim2_Offsets_Y = readInts(); readProperties(i => { float scaleX = UDim2_Scales_X[i], scaleY = UDim2_Scales_Y[i]; int offsetX = UDim2_Offsets_X[i], offsetY = UDim2_Offsets_Y[i]; return(new UDim2(scaleX, offsetX, scaleY, offsetY)); }); break; case PropertyType.Ray: readProperties(i => { float posX = reader.ReadFloat(), posY = reader.ReadFloat(), posZ = reader.ReadFloat(); float dirX = reader.ReadFloat(), dirY = reader.ReadFloat(), dirZ = reader.ReadFloat(); Vector3 origin = new Vector3(posX, posY, posZ); Vector3 direction = new Vector3(dirX, dirY, dirZ); return(new Ray(origin, direction)); }); break; case PropertyType.Faces: readProperties(i => { byte faces = reader.ReadByte(); return((Faces)faces); }); break; case PropertyType.Axes: readProperties(i => { byte axes = reader.ReadByte(); return((Axes)axes); }); break; case PropertyType.BrickColor: int[] BrickColorIds = readInts(); readProperties(i => { int number = BrickColorIds[i]; return(BrickColor.FromNumber(number)); }); break; case PropertyType.Color3: float[] Color3_R = readFloats(), Color3_G = readFloats(), Color3_B = readFloats(); readProperties(i => { float r = Color3_R[i], g = Color3_G[i], b = Color3_B[i]; return(new Color3(r, g, b)); }); break; case PropertyType.Vector2: float[] Vector2_X = readFloats(), Vector2_Y = readFloats(); readProperties(i => { float x = Vector2_X[i], y = Vector2_Y[i]; return(new Vector2(x, y)); }); break; case PropertyType.Vector3: float[] Vector3_X = readFloats(), Vector3_Y = readFloats(), Vector3_Z = readFloats(); readProperties(i => { float x = Vector3_X[i], y = Vector3_Y[i], z = Vector3_Z[i]; return(new Vector3(x, y, z)); }); break; case PropertyType.CFrame: case PropertyType.Quaternion: // Temporarily load the rotation matrices into their properties. // We'll update them to CFrames once we iterate over the position data. float[][] matrices = new float[instCount][]; for (int i = 0; i < instCount; i++) { byte rawOrientId = reader.ReadByte(); if (rawOrientId > 0) { // Make sure this value is in a safe range. int orientId = (rawOrientId - 1) % 36; NormalId xColumn = (NormalId)(orientId / 6); Vector3 R0 = Vector3.FromNormalId(xColumn); NormalId yColumn = (NormalId)(orientId % 6); Vector3 R1 = Vector3.FromNormalId(yColumn); // Compute R2 using the cross product of R0 and R1. Vector3 R2 = R0.Cross(R1); // Generate the rotation matrix. matrices[i] = new float[9] { R0.X, R0.Y, R0.Z, R1.X, R1.Y, R1.Z, R2.X, R2.Y, R2.Z, }; } else if (Type == PropertyType.Quaternion) { float qx = reader.ReadFloat(), qy = reader.ReadFloat(), qz = reader.ReadFloat(), qw = reader.ReadFloat(); Quaternion quaternion = new Quaternion(qx, qy, qz, qw); var rotation = quaternion.ToCFrame(); matrices[i] = rotation.GetComponents(); } else { float[] matrix = new float[9]; for (int m = 0; m < 9; m++) { float value = reader.ReadFloat(); matrix[m] = value; } matrices[i] = matrix; } } float[] CFrame_X = readFloats(), CFrame_Y = readFloats(), CFrame_Z = readFloats(); readProperties(i => { float[] matrix = matrices[i]; float x = CFrame_X[i], y = CFrame_Y[i], z = CFrame_Z[i]; float[] components; if (matrix.Length == 12) { matrix[0] = x; matrix[1] = y; matrix[2] = z; components = matrix; } else { float[] position = new float[3] { x, y, z }; components = position.Concat(matrix).ToArray(); } return(new CFrame(components)); }); break; case PropertyType.Enum: uint[] enums = reader.ReadUInts(instCount); readProperties(i => { Property prop = props[i]; Instance instance = prop.Instance; Type instType = instance.GetType(); uint value = enums[i]; try { var info = ImplicitMember.Get(instType, Name); if (info == null) { if (RobloxFile.LogErrors) { Console.Error.WriteLine($"Enum cast failed for {inst.ClassName}.{Name} using value {value}!"); } return(value); } return(Enum.Parse(info.MemberType, value.ToInvariantString())); } catch { if (RobloxFile.LogErrors) { Console.Error.WriteLine($"Enum cast failed for {inst.ClassName}.{Name} using value {value}!"); } return(value); } }); break; case PropertyType.Ref: var instIds = reader.ReadInstanceIds(instCount); readProperties(i => { int instId = instIds[i]; return(instId >= 0 ? file.Instances[instId] : null); }); break; case PropertyType.Vector3int16: readProperties(i => { short x = reader.ReadInt16(), y = reader.ReadInt16(), z = reader.ReadInt16(); return(new Vector3int16(x, y, z)); }); break; case PropertyType.NumberSequence: readProperties(i => { int numKeys = reader.ReadInt32(); var keypoints = new NumberSequenceKeypoint[numKeys]; for (int key = 0; key < numKeys; key++) { float Time = reader.ReadFloat(), Value = reader.ReadFloat(), Envelope = reader.ReadFloat(); keypoints[key] = new NumberSequenceKeypoint(Time, Value, Envelope); } return(new NumberSequence(keypoints)); }); break; case PropertyType.ColorSequence: readProperties(i => { int numKeys = reader.ReadInt32(); var keypoints = new ColorSequenceKeypoint[numKeys]; for (int key = 0; key < numKeys; key++) { float Time = reader.ReadFloat(), R = reader.ReadFloat(), G = reader.ReadFloat(), B = reader.ReadFloat(); Color3 Value = new Color3(R, G, B); int Envelope = reader.ReadInt32(); keypoints[key] = new ColorSequenceKeypoint(Time, Value, Envelope); } return(new ColorSequence(keypoints)); }); break; case PropertyType.NumberRange: readProperties(i => { float min = reader.ReadFloat(); float max = reader.ReadFloat(); return(new NumberRange(min, max)); }); break; case PropertyType.Rect: float[] Rect_X0 = readFloats(), Rect_Y0 = readFloats(), Rect_X1 = readFloats(), Rect_Y1 = readFloats(); readProperties(i => { float x0 = Rect_X0[i], y0 = Rect_Y0[i], x1 = Rect_X1[i], y1 = Rect_Y1[i]; return(new Rect(x0, y0, x1, y1)); }); break; case PropertyType.PhysicalProperties: readProperties(i => { bool custom = reader.ReadBoolean(); if (custom) { float Density = reader.ReadFloat(), Friction = reader.ReadFloat(), Elasticity = reader.ReadFloat(), FrictionWeight = reader.ReadFloat(), ElasticityWeight = reader.ReadFloat(); return(new PhysicalProperties ( Density, Friction, Elasticity, FrictionWeight, ElasticityWeight )); } return(null); }); break; case PropertyType.Color3uint8: byte[] Color3uint8_R = reader.ReadBytes(instCount), Color3uint8_G = reader.ReadBytes(instCount), Color3uint8_B = reader.ReadBytes(instCount); readProperties(i => { byte r = Color3uint8_R[i], g = Color3uint8_G[i], b = Color3uint8_B[i]; Color3uint8 result = Color3.FromRGB(r, g, b); return(result); }); break; case PropertyType.Int64: long[] Int64s = reader.ReadInterleaved(instCount, (buffer, start) => { long result = BitConverter.ToInt64(buffer, start); return((long)((ulong)result >> 1) ^ (-(result & 1))); }); readProperties(i => Int64s[i]); break; case PropertyType.SharedString: uint[] SharedKeys = reader.ReadUInts(instCount); readProperties(i => { uint key = SharedKeys[i]; return(file.SharedStrings[key]); }); break; case PropertyType.ProtectedString: readProperties(i => { int length = reader.ReadInt32(); byte[] buffer = reader.ReadBytes(length); return(new ProtectedString(buffer)); }); break; default: if (RobloxFile.LogErrors) { Console.Error.WriteLine("Unhandled property type: {0}!", Type); } break; // } reader.Dispose(); }
public void ReadProperties(RobloxBinaryFile file) { INST type = file.Types[TypeIndex]; FileProperty[] props = new FileProperty[type.NumInstances]; int[] ids = type.InstanceIds; int instCount = type.NumInstances; for (int i = 0; i < instCount; i++) { int id = ids[i]; FileInstance instance = file.Instances[id]; FileProperty prop = new FileProperty(); prop.Instance = instance; prop.Name = Name; prop.Type = Type; props[i] = prop; instance.AddProperty(ref prop); } // Setup some short-hand functions for actions frequently used during the read procedure. var readInts = new Func <int[]>(() => Reader.ReadInts(instCount)); var readFloats = new Func <float[]>(() => Reader.ReadFloats(instCount)); var loadProperties = new Action <Func <int, object> >(read => { for (int i = 0; i < instCount; i++) { object result = read(i); props[i].Value = result; } }); // Read the property data based on the property type. // NOTE: This only reads the property types needed for Rbx2Source. // You can visit the following link for a full implementation: // https://github.com/CloneTrooper1019/Roblox-File-Format/blob/master/BinaryFormat/ChunkTypes/PROP.cs switch (Type) { case PropertyType.String: loadProperties(i => Reader.ReadString()); break; case PropertyType.Bool: loadProperties(i => Reader.ReadBoolean()); break; case PropertyType.Int: int[] ints = readInts(); loadProperties(i => ints[i]); break; case PropertyType.Float: float[] floats = readFloats(); loadProperties(i => floats[i]); break; case PropertyType.Double: loadProperties(i => Reader.ReadDouble()); break; case PropertyType.Vector3: float[] Vector3_X = readFloats(), Vector3_Y = readFloats(), Vector3_Z = readFloats(); loadProperties(i => { float x = Vector3_X[i], y = Vector3_Y[i], z = Vector3_Z[i]; return(new Vector3(x, y, z)); }); break; case PropertyType.BrickColor: int[] brickColorIds = readInts(); loadProperties(i => { int brickColorId = brickColorIds[i]; return(BrickColor.FromNumber(brickColorId)); }); break; case PropertyType.CFrame: case PropertyType.Quaternion: // Temporarily load the rotation matrices into their properties. // We'll update them to CFrames once we iterate over the position data. loadProperties(i => { int normXY = Reader.ReadByte(); if (normXY > 0) { // Make sure this value is in a safe range. normXY = (normXY - 1) % 36; NormalId normX = (NormalId)(normXY / 6); Vector3 R0 = Vector3.FromNormalId(normX); NormalId normY = (NormalId)(normXY % 6); Vector3 R1 = Vector3.FromNormalId(normY); // Compute R2 using the cross product of R0 and R1. Vector3 R2 = R0.Cross(R1); // Generate the rotation matrix and return it. return(new float[9] { R0.X, R0.Y, R0.Z, R1.X, R1.Y, R1.Z, R2.X, R2.Y, R2.Z, }); } else if (Type == PropertyType.Quaternion) { float qx = Reader.ReadFloat(), qy = Reader.ReadFloat(), qz = Reader.ReadFloat(), qw = Reader.ReadFloat(); Quaternion quaternion = new Quaternion(qx, qy, qz, qw); var rotation = quaternion.ToCFrame(); return(rotation.GetComponents()); } else { float[] matrix = new float[9]; for (int m = 0; m < 9; m++) { float value = Reader.ReadFloat(); matrix[m] = value; } return(matrix); } }); float[] CFrame_X = readFloats(), CFrame_Y = readFloats(), CFrame_Z = readFloats(); loadProperties(i => { float[] matrix = props[i].Value as float[]; float x = CFrame_X[i], y = CFrame_Y[i], z = CFrame_Z[i]; float[] position = new float[3] { x, y, z }; float[] components = position .Concat(matrix) .ToArray(); return(new CFrame(components)); }); break; case PropertyType.Enum: uint[] enums = Reader.ReadInterleaved(instCount, BitConverter.ToUInt32); loadProperties(i => enums[i]); break; case PropertyType.Ref: int[] instIds = Reader.ReadInstanceIds(instCount); loadProperties(i => { int instId = instIds[i]; return(instId >= 0 ? file.Instances[instId] : null); }); break; case PropertyType.Color3uint8: byte[] Color3uint8_R = Reader.ReadBytes(instCount), Color3uint8_G = Reader.ReadBytes(instCount), Color3uint8_B = Reader.ReadBytes(instCount); loadProperties(i => { byte r = Color3uint8_R[i], g = Color3uint8_G[i], b = Color3uint8_B[i]; return(Color.FromArgb(r, g, b)); }); break; case PropertyType.Int64: long[] int64s = Reader.ReadInterleaved(instCount, (buffer, start) => { long result = BitConverter.ToInt64(buffer, start); return((long)((ulong)result >> 1) ^ (-(result & 1))); }); loadProperties(i => int64s[i]); break; } Reader.Dispose(); }
public static TextureBindings BindTextures(Dictionary <string, ValveMaterial> materials) { Contract.Requires(materials != null); var textures = new TextureBindings(); var images = textures.Images; foreach (string mtlName in materials.Keys) { ValveMaterial material = materials[mtlName]; Asset textureAsset = material.TextureAsset; if (textureAsset == null || textureAsset.Id == 9854798) { var linkedTo = material.LinkedTo; Color3 color; if (linkedTo.BrickColor != null) { BrickColor bc = linkedTo.BrickColor; color = bc.Color; } else if (linkedTo.Color3uint8 != null) { color = linkedTo.Color3uint8; } else { BrickColor def = BrickColor.FromNumber(-1); color = def.Color; } float r = color.R, g = color.G, b = color.B; if (!images.ContainsKey("BrickColor")) { byte[] rawImg = ResourceUtility.GetResource("Images/BlankWhite.png"); using (MemoryStream imgStream = new MemoryStream(rawImg)) { Image image = Image.FromStream(imgStream); textures.BindTexture("BrickColor", image, false); } } material.UseEnvMap = true; material.VertexColor = new Vector3(r, g, b); textures.BindTextureAlias(mtlName, "BrickColor"); } else { byte[] rawImg = textureAsset.GetContent(); using (MemoryStream imgStream = new MemoryStream(rawImg)) { Image image = Image.FromStream(imgStream); textures.BindTexture(mtlName, image); } } } return(textures); }