public static int zchdc(ref Complex[] a, int lda, int p, ref int[] ipvt, int job) //****************************************************************************80 // // Purpose: // // ZCHDC: Cholesky decomposition of a Hermitian positive definite matrix. // // Discussion: // // A pivoting option allows the user to estimate the condition of a // Hermitian positive definite matrix or determine the rank of a // Hermitian positive semidefinite matrix. // // For Hermitian positive definite matrices, INFO = P is the normal return. // // For pivoting with Hermitian positive semidefinite matrices, INFO will // in general be less than P. However, INFO may be greater than // the rank of A, since rounding error can cause an otherwise zero // element to be positive. Indefinite systems will always cause // INFO to be less than P. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2006 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // // Parameters: // // Input/output, complex <double> A[LDA*P]. On input, A contains the matrix // whose decomposition is to be computed. Only the upper half of A // need be stored. The lower part of the array A is not referenced. // On output, A contains in its upper half the Cholesky factor // of the matrix A as it has been permuted by pivoting. // // Input, int LDA, the leading dimension of A. // // Input, int P, the order of the matrix. // // Input/output, int IPVT[P]. IPVT is not referenced if JOB == 0. // On input, IPVT contains integers that control the selection of the // pivot elements, if pivoting has been requested. Each diagonal element // A(K,K) is placed in one of three classes according to the input // value of IPVT(K): // IPVT(K) > 0, X(K) is an initial element. // IPVT(K) == 0, X(K) is a free element. // IPVT(K) < 0, X(K) is a final element. // Before the decomposition is computed, initial elements are moved by // symmetric row and column interchanges to the beginning of the array A // and final elements to the end. Both initial and final elements // are frozen in place during the computation and only free elements // are moved. At the K-th stage of the reduction, if A(K,K) is occupied // by a free element, it is interchanged with the largest free element // A(L,L) with K <= L. // On output, IPVT(K) contains the index of the diagonal element // of A that was moved into the J-th position, if pivoting was requested. // // Input, int JOB, specifies whether column pivoting is to be done. // 0, no pivoting is done. // nonzero, pivoting is done. // // Output, int ZCHDC, contains the index of the last positive // diagonal element of the Cholesky factor. // { int i_temp; int j; int k; Complex temp; int pl = 1; int pu = 0; int info = p; Complex[] work = new Complex[p]; if (job != 0) { // // Pivoting has been requested. Rearrange the elements according to IPVT. // for (k = 1; k <= p; k++) { bool swapk = 0 < ipvt[k - 1]; bool negk = ipvt[k - 1] < 0; ipvt[k - 1] = negk switch { true => - k, _ => k }; switch (swapk) { case true: { if (k != pl) { BLAS1Z.zswap(pl - 1, ref a, 1, ref a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + (pl - 1) * lda); temp = a[k - 1 + (k - 1) * lda]; a[k - 1 + (k - 1) * lda] = a[pl - 1 + (pl - 1) * lda]; a[pl - 1 + (pl - 1) * lda] = temp; a[pl - 1 + (k - 1) * lda] = Complex.Conjugate(a[pl - 1 + (k - 1) * lda]); int plp1 = pl + 1; for (j = plp1; j <= p; j++) { if (j < k) { temp = Complex.Conjugate(a[pl - 1 + (j - 1) * lda]); a[pl - 1 + (j - 1) * lda] = Complex.Conjugate(a[j - 1 + (k - 1) * lda]); a[j - 1 + (k - 1) * lda] = temp; } else if (j != k) { temp = a[pl - 1 + (j - 1) * lda]; a[pl - 1 + (j - 1) * lda] = a[k - 1 + (j - 1) * lda]; a[k - 1 + (j - 1) * lda] = temp; } } ipvt[k - 1] = ipvt[pl - 1]; ipvt[pl - 1] = k; } pl += 1; break; } } } pu = p; int kb; for (kb = pl; kb <= p; kb++) { k = p - kb + pl; switch (ipvt[k - 1]) { case < 0: { ipvt[k - 1] = -ipvt[k - 1]; if (pu != k) { BLAS1Z.zswap(k - 1, ref a, 1, ref a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + (pu - 1) * lda); temp = a[k - 1 + (k - 1) * lda]; a[k - 1 + (k - 1) * lda] = a[pu - 1 + (pu - 1) * lda]; a[pu - 1 + (pu - 1) * lda] = temp; a[k - 1 + (pu - 1) * lda] = Complex.Conjugate(a[k - 1 + (pu - 1) * lda]); for (j = k + 1; j <= p; j++) { if (j < pu) { temp = Complex.Conjugate(a[k - 1 + (j - 1) * lda]); a[k - 1 + (j - 1) * lda] = Complex.Conjugate(a[j - 1 + (pu - 1) * lda]); a[j - 1 + (pu - 1) * lda] = temp; } else if (j != pu) { temp = a[k - 1 + (j - 1) * lda]; a[k - 1 + (j - 1) * lda] = a[pu - 1 + (j - 1) * lda]; a[pu - 1 + (j - 1) * lda] = temp; } } i_temp = ipvt[k - 1]; ipvt[k - 1] = ipvt[pu - 1]; ipvt[pu - 1] = i_temp; } pu -= 1; break; } } } } for (k = 1; k <= p; k++) { // // Reduction loop. // double maxdia = a[k - 1 + (k - 1) * lda].Real; int maxl = k; // // Determine the pivot element. // if (pl <= k && k < pu) { int l; for (l = k + 1; l <= pu; l++) { if (!(maxdia < a[l - 1 + (l - 1) * lda].Real)) { continue; } maxdia = a[l - 1 + (l - 1) * lda].Real; maxl = l; } } switch (maxdia) { // // Quit if the pivot element is not positive. // case <= 0.0: info = k - 1; return(info); } // // Start the pivoting and update IPVT. // if (k != maxl) { BLAS1Z.zswap(k - 1, ref a, 1, ref a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + (maxl - 1) * lda); a[maxl - 1 + (maxl - 1) * lda] = a[k - 1 + (k - 1) * lda]; a[k - 1 + (k - 1) * lda] = new Complex(maxdia, 0.0); i_temp = ipvt[maxl - 1]; ipvt[maxl - 1] = ipvt[k - 1]; ipvt[k - 1] = i_temp; a[k - 1 + (maxl - 1) * lda] = Complex.Conjugate(a[k - 1 + (maxl - 1) * lda]); } // // Reduction step. Pivoting is contained across the rows. // work[k - 1] = new Complex(Math.Sqrt(a[k - 1 + (k - 1) * lda].Real), 0.0); a[k - 1 + (k - 1) * lda] = work[k - 1]; for (j = k + 1; j <= p; j++) { if (k != maxl) { if (j < maxl) { temp = Complex.Conjugate(a[k - 1 + (j - 1) * lda]); a[k - 1 + (j - 1) * lda] = Complex.Conjugate(a[j - 1 + (maxl - 1) * lda]); a[j - 1 + (maxl - 1) * lda] = temp; } else if (j != maxl) { temp = a[k - 1 + (j - 1) * lda]; a[k - 1 + (j - 1) * lda] = a[maxl - 1 + (j - 1) * lda]; a[maxl - 1 + (j - 1) * lda] = temp; } } a[k - 1 + (j - 1) * lda] /= work[k - 1]; work[j - 1] = Complex.Conjugate(a[k - 1 + (j - 1) * lda]); temp = -a[k - 1 + (j - 1) * lda]; BLAS1Z.zaxpy(j - k, temp, work, 1, ref a, 1, xIndex: +k, yIndex: +k + (j - 1) * lda); } } return(info); } }
public static void zspdi(ref Complex[] ap, int n, int[] ipvt, ref Complex[] det, int job) //****************************************************************************80 // // Purpose: // // ZSPDI sets the determinant and inverse of a complex symmetric packed matrix. // // Discussion: // // ZSPDI uses the factors from ZSPFA. // // The matrix is stored in packed form. // // A division by zero will occur if the inverse is requested and ZSPCO has // set RCOND to 0.0 or ZSPFA has set INFO nonzero. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2006 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // // Parameters: // // Input/output, Complex AP[N*(N+1)/2]; on input, the matrix factors // from ZSPFA. On output, if the inverse was requested, the upper // triangle of the inverse of the original matrix, stored in packed // form. The columns of the upper triangle are stored sequentially // in a one-dimensional array. // // Input, int N, the order of the matrix. // // Input, int IPVT[N], the pivot vector from ZSPFA. // // Output, Complex DET[2], the determinant of the original matrix. // Determinant = DET(1) * 10.0**DET(2) with 1.0 <= abs ( DET(1) ) < 10.0 // or DET(1) = 0.0. Also, DET(2) is strictly real. // // Input, int JOB, has the decimal expansion AB where // if B != 0, the inverse is computed, // if A != 0, the determinant is computed, // For example, JOB = 11 gives both. // { Complex d; int ik; int ikp1; int k; int kk; int kkp1 = 0; Complex t; bool noinv = job % 10 == 0; bool nodet = job % 100 / 10 == 0; switch (nodet) { case false: { det[0] = new Complex(1.0, 0.0); det[1] = new Complex(0.0, 0.0); t = new Complex(0.0, 0.0); ik = 0; for (k = 1; k <= n; k++) { kk = ik + k; d = ap[kk - 1]; switch (ipvt[k - 1]) { // // 2 by 2 block // Use det (D T) = ( D / T * C - T ) * T // (T C) // to avoid underflow/overflow troubles. // Take two passes through scaling. Use T for flag. // case <= 0 when typeMethods.zabs1(t) == 0.0: ikp1 = ik + k; kkp1 = ikp1 + k; t = ap[kkp1 - 1]; d = d / t * ap[kkp1] - t; break; case <= 0: d = t; t = new Complex(0.0, 0.0); break; } switch (nodet) { case false: { det[0] *= d; if (typeMethods.zabs1(det[0]) != 0.0) { while (typeMethods.zabs1(det[0]) < 1.0) { det[0] *= new Complex(10.0, 0.0); det[1] -= new Complex(1.0, 0.0); } while (10.0 <= typeMethods.zabs1(det[0])) { det[0] /= new Complex(10.0, 0.0); det[1] += new Complex(1.0, 0.0); } } break; } } ik += k; } break; } } switch (noinv) { // // Compute inverse ( A ). // case false: { Complex[] work = new Complex[n]; k = 1; ik = 0; while (k <= n) { int km1 = k - 1; kk = ik + k; ikp1 = ik + k; int j; int jk; int i; int ij; int kstep; switch (ipvt[k - 1]) { case >= 0: { // // 1 by 1 // ap[kk - 1] = new Complex(1.0, 0.0) / ap[kk - 1]; switch (km1) { case >= 1: { for (i = 1; i <= km1; i++) { work[i - 1] = ap[ik + i - 1]; } ij = 0; for (j = 1; j <= km1; j++) { jk = ik + j; ap[jk - 1] = BLAS1Z.zdotu(j, ap, 1, work, 1, xIndex: +ij); BLAS1Z.zaxpy(j - 1, work[j - 1], ap, 1, ref ap, 1, xIndex: +ij, yIndex: +ik); ij += j; } ap[kk - 1] += BLAS1Z.zdotu(km1, work, 1, ap, 1, yIndex: +ik); break; } } kstep = 1; break; } // default: { kkp1 = ikp1 + k; t = ap[kkp1 - 1]; Complex ak = ap[kk - 1] / t; Complex akp1 = ap[kkp1] / t; Complex akkp1 = ap[kkp1 - 1] / t; d = t * (ak * akp1 - new Complex(1.0, 0.0)); ap[kk - 1] = akp1 / d; ap[kkp1] = ak / d; ap[kkp1 - 1] = -akkp1 / d; switch (km1) { case >= 1: { for (i = 1; i <= km1; i++) { work[i - 1] = ap[ikp1 - 1]; } ij = 0; for (j = 1; j <= km1; j++) { int jkp1 = ikp1 + j; ap[jkp1 - 1] = BLAS1Z.zdotu(j, ap, 1, work, 1, xIndex: +ij); BLAS1Z.zaxpy(j - 1, work[j - 1], ap, 1, ref ap, 1, xIndex: +ij, yIndex: +ikp1); ij += j; } ap[kkp1] += BLAS1Z.zdotu(km1, work, 1, ap, 1, yIndex: +ikp1); ap[kkp1 - 1] += BLAS1Z.zdotu(km1, ap, 1, ap, 1, xIndex: +ik, yIndex: +ikp1); for (i = 1; i <= km1; i++) { work[i - 1] = ap[ik + i - 1]; } ij = 0; for (j = 1; j <= km1; j++) { jk = ik + j; ap[jk - 1] = BLAS1Z.zdotu(j, ap, 1, work, 1, xIndex: +ij); BLAS1Z.zaxpy(j - 1, work[j - 1], ap, 1, ref ap, 1, xIndex: +ij, yIndex: +ik); ij += j; } ap[kk - 1] += BLAS1Z.zdotu(km1, work, 1, ap, 1, yIndex: +ik); break; } } kstep = 2; break; } } // // Swap. // int ks = Math.Abs(ipvt[k - 1]); if (ks != k) { int iks = ks * (ks - 1) / 2; BLAS1Z.zswap(ks, ref ap, 1, ref ap, 1, xIndex: +iks, yIndex: +ik); int ksj = ik + ks; int jb; for (jb = ks; jb <= k; jb++) { j = k + ks - jb; jk = ik + j; t = ap[jk - 1]; ap[jk - 1] = ap[ksj - 1]; ap[ksj - 1] = t; ksj -= j - 1; } if (kstep != 1) { int kskp1 = ikp1 + ks; t = ap[kskp1 - 1]; ap[kskp1 - 1] = ap[kkp1 - 1]; ap[kkp1 - 1] = t; } } ik += k; ik = kstep switch { 2 => ik + k + 1, _ => ik }; k += kstep; } break; } } } }
public static void zqrdc(ref Complex[] x, int ldx, int n, int p, ref Complex[] qraux, ref int[] ipvt, int job) //****************************************************************************80 // // Purpose: // // ZQRDC computes the QR factorization of an N by P complex <double> matrix. // // Discussion: // // ZQRDC uses Householder transformations to compute the QR factorization // of an N by P matrix X. Column pivoting based on the 2-norms of the // reduced columns may be performed at the user's option. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2006 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // // Parameters: // // Input/output, complex <double> X[LDX*P]; on input, the matrix whose decomposition // is to be computed. On output, the upper triangle contains the upper // triangular matrix R of the QR factorization. Below its diagonal, X // contains information from which the unitary part of the decomposition // can be recovered. If pivoting has been requested, the decomposition is // not that of the original matrix X, but that of X with its columns // permuted as described by IPVT. // // Input, int LDX, the leading dimension of X. N <= LDX. // // Input, int N, the number of rows of the matrix. // // Input, int P, the number of columns in the matrix X. // // Output, complex <double> QRAUX[P], further information required to recover // the unitary part of the decomposition. // // Input/output, int IPVT[P]; on input, ints that control the // selection of the pivot columns. The K-th column X(K) of X is placed // in one of three classes according to the value of IPVT(K): // IPVT(K) > 0, then X(K) is an initial column. // IPVT(K) == 0, then X(K) is a free column. // IPVT(K) < 0, then X(K) is a final column. // Before the decomposition is computed, initial columns are moved to the // beginning of the array X and final columns to the end. Both initial // and final columns are frozen in place during the computation and only // free columns are moved. At the K-th stage of the reduction, if X(K) // is occupied by a free column it is interchanged with the free column // of largest reduced norm. // On output, IPVT(K) contains the index of the column of the // original matrix that has been interchanged into // the K-th column, if pivoting was requested. // IPVT is not referenced if JOB == 0. // // Input, int JOB, initiates column pivoting. // 0, no pivoting is done. // nonzero, pivoting is done. // { int itemp; int j; int l; int pl = 1; int pu = 0; Complex[] work = new Complex [p]; if (job != 0) { // // Pivoting has been requested. Rearrange the columns according to IPVT. // for (j = 1; j <= p; j++) { bool swapj = 0 < ipvt[j - 1]; bool negj = ipvt[j - 1] < 0; ipvt[j - 1] = negj switch { true => - j, _ => j }; switch (swapj) { case true: { if (j != pl) { BLAS1Z.zswap(n, ref x, 1, ref x, 1, xIndex: +0 + (pl - 1) * ldx, yIndex: +0 + (j - 1) * ldx); } ipvt[j - 1] = ipvt[pl - 1]; ipvt[pl - 1] = j; pl += 1; break; } } } pu = p; int jj; for (jj = 1; jj <= p; jj++) { j = p - jj + 1; switch (ipvt[j - 1]) { case < 0: { ipvt[j - 1] = -ipvt[j - 1]; if (j != pu) { BLAS1Z.zswap(n, ref x, 1, ref x, 1, xIndex: +0 + (pu - 1) * ldx, yIndex: +0 + (j - 1) * ldx); itemp = ipvt[pu - 1]; ipvt[pu - 1] = ipvt[j - 1]; ipvt[j - 1] = itemp; } pu -= 1; break; } } } } // // Compute the norms of the free columns. // for (j = pl; j <= pu; j++) { qraux[j - 1] = new Complex(BLAS1Z.dznrm2(n, x, 1, index: +0 + (j - 1) * ldx), 0.0); work[j - 1] = qraux[j - 1]; } // // Perform the Householder reduction of X. // int lup = Math.Min(n, p); for (l = 1; l <= lup; l++) { // // Locate the column of largest norm and bring it // into the pivot position. // if (pl <= l && l < pu) { double maxnrm = 0.0; int maxj = l; for (j = l; j <= pu; j++) { if (!(maxnrm < qraux[j - 1].Real)) { continue; } maxnrm = qraux[j - 1].Real; maxj = j; } if (maxj != l) { BLAS1Z.zswap(n, ref x, 1, ref x, 1, xIndex: +0 + (l - 1) * ldx, yIndex: +0 + (maxj - 1) * ldx); qraux[maxj - 1] = qraux[l - 1]; work[maxj - 1] = work[l - 1]; itemp = ipvt[maxj - 1]; ipvt[maxj - 1] = ipvt[l - 1]; ipvt[l - 1] = itemp; } } qraux[l - 1] = new Complex(0.0, 0.0); if (l == n) { continue; } // // Compute the Householder transformation for column L. // Complex nrmxl = new(BLAS1Z.dznrm2(n - l + 1, x, 1, index: +l - 1 + (l - 1) * ldx), 0.0); if (typeMethods.zabs1(nrmxl) == 0.0) { continue; } if (typeMethods.zabs1(x[l - 1 + (l - 1) * ldx]) != 0.0) { nrmxl = typeMethods.zsign2(nrmxl, x[l - 1 + (l - 1) * ldx]); } Complex t = new Complex(1.0, 0.0) / nrmxl; BLAS1Z.zscal(n - l + 1, t, ref x, 1, index: +l - 1 + (l - 1) * ldx); x[l - 1 + (l - 1) * ldx] = new Complex(1.0, 0.0) + x[l - 1 + (l - 1) * ldx]; // // Apply the transformation to the remaining columns, // updating the norms. // for (j = l + 1; j <= p; j++) { t = -BLAS1Z.zdotc(n - l + 1, x, 1, x, 1, xIndex: +l - 1 + (l - 1) * ldx, yIndex: +l - 1 + (j - 1) * ldx) / x[l - 1 + (l - 1) * ldx]; BLAS1Z.zaxpy(n - l + 1, t, x, 1, ref x, 1, xIndex: +l - 1 + (l - 1) * ldx, yIndex: +l - 1 + (j - 1) * ldx); if (j < pl || pu < j) { continue; } if (typeMethods.zabs1(qraux[j - 1]) == 0.0) { continue; } double tt = 1.0 - Math.Pow(Complex.Abs(x[l - 1 + (j - 1) * ldx]) / qraux[j - 1].Real, 2); tt = Math.Max(tt, 0.0); t = new Complex(tt, 0.0); tt = 1.0 + 0.05 * tt * Math.Pow(qraux[j - 1].Real / work[j - 1].Real, 2); if (Math.Abs(tt - 1.0) > double.Epsilon) { qraux[j - 1] *= Complex.Sqrt(t); } else { qraux[j - 1] = new Complex(BLAS1Z.dznrm2(n - l, x, 1, index: +l + (j - 1) * ldx), 0.0); work[j - 1] = qraux[j - 1]; } } // // Save the transformation. // qraux[l - 1] = x[l - 1 + (l - 1) * ldx]; x[l - 1 + (l - 1) * ldx] = -nrmxl; } } }
public static int zspfa(ref Complex[] ap, int n, ref int[] ipvt) //****************************************************************************80 // // Purpose: // // ZSPFA factors a complex symmetric matrix stored in packed form. // // Discussion: // // The factorization is done by elimination with symmetric pivoting. // // To solve A*X = B, follow ZSPFA by ZSPSL. // // To compute inverse(A)*C, follow ZSPFA by ZSPSL. // // To compute determinant(A), follow ZSPFA by ZSPDI. // // To compute inverse(A), follow ZSPFA by ZSPDI. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2006 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // // Parameters: // // Input/output, Complex AP[N*(N+1)/2]; On input, the packed form of a // symmetric matrix A. The columns of the upper triangle are stored // sequentially in a one-dimensional array. On output, a block diagonal // matrix and the multipliers which were used to obtain it stored in // packed form. The factorization can be written A = U*D*U' where U // is a product of permutation and unit upper triangular matrices, // U' is the transpose of U, and D is block diagonal with 1 by 1 and // 2 by 2 blocks. // // Input, int N, the order of the matrix. // // Output, int IPVT[N], the pivot indices. // // Output, int ZSPFA. // 0, normal value. // K, if the K-th pivot block is singular. This is not an error condition // for this subroutine, but it does indicate that ZSPSL or ZSPDI may // divide by zero if called. // { int im = 0; // // Initialize. // // ALPHA is used in choosing pivot block size. // double alpha = (1.0 + Math.Sqrt(17.0)) / 8.0; int info = 0; // // Main loop on K, which goes from N to 1. // int k = n; int ik = n * (n - 1) / 2; for (;;) { // // Leave the loop if K = 0 or K = 1. // if (k == 0) { break; } if (k == 1) { ipvt[0] = 1; if (typeMethods.zabs1(ap[0]) == 0.0) { info = 1; } break; } // // This section of code determines the kind of // elimination to be performed. When it is completed, // KSTEP will be set to the size of the pivot block, and // SWAP will be set to .true. if an interchange is // required. // int km1 = k - 1; int kk = ik + k; double absakk = typeMethods.zabs1(ap[kk - 1]); // // Determine the largest off-diagonal element in column K. // int imax = BLAS1Z.izamax(k - 1, ap, 1, index: +ik); int imk = ik + imax; double colmax = typeMethods.zabs1(ap[imk - 1]); int kstep; bool swap; int j; int imj; if (alpha * colmax <= absakk) { kstep = 1; swap = false; } // // Determine the largest off-diagonal element in row IMAX. // else { double rowmax = 0.0; im = imax * (imax - 1) / 2; imj = im + 2 * imax; for (j = imax + 1; j <= k; j++) { rowmax = Math.Max(rowmax, typeMethods.zabs1(ap[imj - 1])); imj += j; } if (imax != 1) { int jmax = BLAS1Z.izamax(imax - 1, ap, 1, index: +im); int jmim = jmax + im; rowmax = Math.Max(rowmax, typeMethods.zabs1(ap[jmim - 1])); } int imim = imax + im; if (alpha * rowmax <= typeMethods.zabs1(ap[imim - 1])) { kstep = 1; swap = true; } else if (alpha * colmax * (colmax / rowmax) <= absakk) { kstep = 1; swap = false; } else { kstep = 2; swap = imax != km1; } } switch (Math.Max(absakk, colmax)) { // // Column K is zero. Set INFO and iterate the loop. // case 0.0: { ipvt[k - 1] = k; info = k; ik -= k - 1; switch (kstep) { case 2: ik -= k - 2; break; } k -= kstep; continue; } } Complex mulk; Complex t; int jk; int jj; int ij; if (kstep != 2) { switch (swap) { // // 1 x 1 pivot block. // case true: { BLAS1Z.zswap(imax, ref ap, 1, ref ap, 1, xIndex: +im, yIndex: +ik); imj = ik + imax; for (jj = imax; jj <= k; jj++) { j = k + imax - jj; jk = ik + j; t = ap[jk - 1]; ap[jk - 1] = ap[imj - 1]; ap[imj - 1] = t; imj -= j - 1; } break; } } // // Perform the elimination. // ij = ik - (k - 1); for (jj = 1; jj <= km1; jj++) { j = k - jj; jk = ik + j; mulk = -ap[jk - 1] / ap[kk - 1]; t = mulk; BLAS1Z.zaxpy(j, t, ap, 1, ref ap, 1, xIndex: +ik, yIndex: +ij); ap[jk - 1] = mulk; ij -= j - 1; } ipvt[k - 1] = swap switch { // // Set the pivot array. // true => imax, _ => k }; } // // 2 x 2 pivot block. // else { int km1k = ik + k - 1; int ikm1 = ik - (k - 1); int jkm1; switch (swap) { case true: { BLAS1Z.zswap(imax, ref ap, 1, ref ap, 1, xIndex: +im, yIndex: +ikm1); imj = ikm1 + imax; for (jj = imax; jj <= km1; jj++) { j = km1 + imax - jj; jkm1 = ikm1 + j; t = ap[jkm1 - 1]; ap[jkm1 - 1] = ap[imj - 1]; ap[imj - 1] = t; imj -= j - 1; } t = ap[km1k - 1]; ap[km1k - 1] = ap[imk - 1]; ap[imk - 1] = t; break; } } // // Perform the elimination. // int km2 = k - 2; if (km2 != 0) { Complex ak = ap[kk - 1] / ap[km1k - 1]; int km1km1 = ikm1 + k - 1; Complex akm1 = ap[km1km1 - 1] / ap[km1k - 1]; Complex denom = new Complex(1.0, 0.0) - ak * akm1; ij = ik - (k - 1) - (k - 2); for (jj = 1; jj <= km2; jj++) { j = km1 - jj; jk = ik + j; Complex bk = ap[jk - 1] / ap[km1k - 1]; jkm1 = ikm1 + j; Complex bkm1 = ap[jkm1 - 1] / ap[km1k - 1]; mulk = (akm1 * bk - bkm1) / denom; Complex mulkm1 = (ak * bkm1 - bk) / denom; t = mulk; BLAS1Z.zaxpy(j, t, ap, 1, ref ap, 1, xIndex: +ik, yIndex: +ij); t = mulkm1; BLAS1Z.zaxpy(j, t, ap, 1, ref ap, 1, xIndex: +ikm1, yIndex: +ij); ap[jk - 1] = mulk; ap[jkm1 - 1] = mulkm1; ij -= j - 1; } } ipvt[k - 1] = swap switch { // // Set the pivot array. // true => - imax, _ => 1 - k }; ipvt[k - 2] = ipvt[k - 1]; } ik -= k - 1; switch (kstep) { case 2: ik -= k - 2; break; } k -= kstep; } return(info); } }
public static void zhidi(ref Complex[] a, int lda, int n, int[] ipvt, ref double[] det, ref int[] inert, int job) //****************************************************************************80 // // Purpose: // // ZHIDI computes the determinant and inverse of a matrix factored by ZHIFA. // // Discussion: // // ZHIDI computes the determinant, inertia (number of positive, zero, // and negative eigenvalues) and inverse of a complex hermitian matrix // using the factors from ZHIFA. // // A division by zero may occur if the inverse is requested // and ZHICO has set RCOND == 0.0 or ZHIFA has set INFO /= 0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2006 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // // Parameters: // // Input/output, Complex A[LDA*N]; on input, the factored matrix // from ZHIFA. On output, if the inverse was requested, A contains // the inverse matrix. The strict lower triangle of A is never // referenced. // // Input, int LDA, the leading dimension of A. // // Input, int N, the order of the matrix. // // Input, int IPVT[N], the pivot vector from ZHIFA. // // Output, double DET[2], the determinant of the original matrix. // Determinant = det[0] * 10.0**det[1] with 1.0 <= Math.Abs ( det[0] ) < 10.0 // or det[0] = 0.0. // // Output, int INERT[3], the inertia of the original matrix. // INERT(1) = number of positive eigenvalues. // INERT(2) = number of negative eigenvalues. // INERT(3) = number of zero eigenvalues. // // Input, int JOB, has the decimal expansion ABC where: // if C /= 0, the inverse is computed, // if B /= 0, the determinant is computed, // if A /= 0, the inertia is computed. // For example, JOB = 111 gives all three. // { double d; int i; int k; double t; bool noinv = job % 10 == 0; bool nodet = job % 100 / 10 == 0; bool noert = job % 1000 / 100 == 0; if (!nodet || !noert) { switch (noert) { case false: { for (i = 0; i < 3; i++) { inert[i] = 0; } break; } } switch (nodet) { case false: det[0] = 1.0; det[1] = 0.0; break; } t = 0.0; for (k = 0; k < n; k++) { d = a[k + k * lda].Real; switch (ipvt[k]) { // // Check if 1 by 1. // // // 2 by 2 block // Use DET = ( D / T * C - T ) * T, T = Math.Abs ( S ) // to avoid underflow/overflow troubles. // Take two passes through scaling. Use T for flag. // case <= 0 when t == 0.0: t = Complex.Abs(a[k + (k + 1) * lda]); d = d / t * a[k + 1 + (k + 1) * lda].Real - t; break; case <= 0: d = t; t = 0.0; break; } switch (noert) { case false: switch (d) { case > 0.0: inert[0] += 1; break; case < 0.0: inert[1] += 1; break; case 0.0: inert[2] += 1; break; } break; } switch (nodet) { case false: { det[0] *= d; if (det[0] != 0.0) { while (Math.Abs(det[0]) < 1.0) { det[0] *= 10.0; det[1] -= 1.0; } while (10.0 <= Math.Abs(det[0])) { det[0] /= 10.0; det[1] += 1.0; } } break; } } } } switch (noinv) { // // Compute inverse(A). // case false: { Complex[] work = new Complex [n]; k = 1; while (k <= n) { int km1 = k - 1; int kstep; int j; switch (ipvt[k - 1]) { case >= 0: { // // 1 by 1 // a[k - 1 + (k - 1) * lda] = new Complex(1.0 / a[k - 1 + (k - 1) * lda].Real, 0.0); switch (km1) { case >= 1: { for (i = 1; i <= km1; i++) { work[i - 1] = a[i - 1 + (k - 1) * lda]; } for (j = 1; j <= km1; j++) { a[j - 1 + (k - 1) * lda] = BLAS1Z.zdotc(j, a, 1, work, 1, xIndex: +0 + (j - 1) * lda); BLAS1Z.zaxpy(j - 1, work[j - 1], a, 1, ref a, 1, xIndex: +0 + (j - 1) * lda, yIndex: +0 + (k - 1) * lda); } a[k - 1 + (k - 1) * lda] += new Complex( BLAS1Z.zdotc(km1, work, 1, a, 1, yIndex: +0 + (k - 1) * lda).Real, 0.0); break; } } kstep = 1; break; } default: { // // 2 by 2 // t = Complex.Abs(a[k - 1 + k * lda]); double ak = a[k - 1 + (k - 1) * lda].Real / t; double akp1 = a[k + k * lda].Real / t; Complex akkp1 = a[k - 1 + k * lda] / t; d = t * (ak * akp1 - 1.0); a[k - 1 + (k - 1) * lda] = new Complex(akp1 / d, 0.0); a[k + k * lda] = new Complex(ak / d, 0.0); a[k - 1 + k * lda] = -akkp1 / d; switch (km1) { case >= 1: { for (i = 1; i <= km1; i++) { work[i - 1] = a[i - 1 + k * lda]; } for (j = 1; j <= km1; j++) { a[j - 1 + k * lda] = BLAS1Z.zdotc(j, a, 1, work, 1, xIndex: +0 + (j - 1) * lda); BLAS1Z.zaxpy(j - 1, work[j - 1], a, 1, ref a, 1, xIndex: +0 + (j - 1) * lda, yIndex: +0 + k * lda); } a[k + k * lda] += new Complex( BLAS1Z.zdotc(km1, work, 1, a, 1, yIndex: +0 + k * lda).Real, 0.0); a[k - 1 + k * lda] += BLAS1Z.zdotc(km1, a, 1, a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + k * lda); for (i = 1; i <= km1; i++) { work[i - 1] = a[i - 1 + (k - 1) * lda]; } for (j = 1; j <= km1; j++) { a[j - 1 + (k - 1) * lda] = BLAS1Z.zdotc(j, a, 1, work, 1, xIndex: +0 + (j - 1) * lda); BLAS1Z.zaxpy(j - 1, work[j - 1], a, 1, ref a, 1, xIndex: +0 + (j - 1) * lda, yIndex: +0 + (k - 1) * lda); } a[k - 1 + (k - 1) * lda] += new Complex( BLAS1Z.zdotc(km1, work, 1, a, 1, yIndex: +0 + (k - 1) * lda).Real, 0.0); break; } } kstep = 2; break; } } // // Swap // int ks = Math.Abs(ipvt[k - 1]); if (ks != k) { BLAS1Z.zswap(ks, ref a, 1, ref a, 1, xIndex: +0 + (ks - 1) * lda, yIndex: +0 + (k - 1) * lda); Complex t2; for (j = k; ks <= j; j--) { t2 = Complex.Conjugate(a[j - 1 + (k - 1) * lda]); a[j - 1 + (k - 1) * lda] = Complex.Conjugate(a[ks - 1 + (j - 1) * lda]); a[ks - 1 + (j - 1) * lda] = t2; } if (kstep != 1) { t2 = a[ks - 1 + k * lda]; a[ks - 1 + k * lda] = a[k - 1 + k * lda]; a[k - 1 + k * lda] = t2; } } k += kstep; } break; } } }
public static void zsidi(ref Complex[] a, int lda, int n, int[] ipvt, ref Complex[] det, int job) //****************************************************************************80 // // Purpose: // // ZSIDI computes the determinant and inverse of a matrix factored by ZSIFA. // // Discussion: // // It is assumed the complex symmetric matrix has already been factored // by ZSIFA. // // A division by zero may occur if the inverse is requested // and ZSICO set RCOND == 0.0 or ZSIFA set INFO nonzero. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2006 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // // Parameters: // // Input/output, Complex A[LDA*N]; on input, the output from ZSIFA. // If the inverse was requested, then on output, A contains the upper triangle // of the inverse of the original matrix. The strict lower triangle // is never referenced. // // Input, int LDA, the leading dimension of A. // // Input, int N, the order of the matrix. // // Input, int IPVT[N], the pivot vector from ZSIFA. // // Output, Complex DET[2], if requested, the determinant of the matrix. // Determinant = DET(1) * 10.0**DET(2) with 1.0 <= abs ( DET(1) ) < 10.0 // or DET(1) = 0.0. Also, DET(2) is strictly real. // // Input, int JOB, has the decimal expansion AB where // if B != 0, the inverse is computed, // if A != 0, the determinant is computed, // For example, JOB = 11 gives both. // { Complex d; int k; Complex t; bool noinv = job % 10 == 0; bool nodet = job % 100 / 10 == 0; switch (nodet) { case false: { det[0] = new Complex(1.0, 0.0); det[1] = new Complex(0.0, 0.0); t = new Complex(0.0, 0.0); for (k = 1; k <= n; k++) { d = a[k - 1 + (k - 1) * lda]; switch (ipvt[k - 1]) { // // 2 by 2 block. // Use det ( D T ) = ( D / T * C - T ) * T // ( T C ) // to avoid underflow/overflow troubles. // Take two passes through scaling. Use T for flag. // case <= 0 when typeMethods.zabs1(t) == 0.0: t = a[k - 1 + k * lda]; d = d / t * a[k + k * lda] - t; break; case <= 0: d = t; t = new Complex(0.0, 0.0); break; } det[0] *= d; if (typeMethods.zabs1(det[0]) == 0.0) { continue; } while (typeMethods.zabs1(det[0]) < 1.0) { det[0] *= new Complex(10.0, 0.0); det[1] -= new Complex(1.0, 0.0); } while (10.0 <= typeMethods.zabs1(det[0])) { det[0] /= new Complex(10.0, 0.0); det[1] += new Complex(1.0, 0.0); } } break; } } switch (noinv) { // // Compute inverse ( A ). // case false: { Complex[] work = new Complex [n]; k = 1; while (k <= n) { int km1 = k - 1; int kstep; int j; int i; switch (ipvt[k - 1]) { // // 1 by 1 // case >= 0: { a[k - 1 + (k - 1) * lda] = new Complex(1.0, 0.0) / a[k - 1 + (k - 1) * lda]; switch (km1) { case >= 1: { for (i = 1; i <= km1; i++) { work[i - 1] = a[i - 1 + (k - 1) * lda]; } for (j = 1; j <= km1; j++) { a[j - 1 + (k - 1) * lda] = BLAS1Z.zdotu(j, a, 1, work, 1, xIndex: +0 + (j - 1) * lda); BLAS1Z.zaxpy(j - 1, work[j - 1], a, 1, ref a, 1, xIndex: +0 + (j - 1) * lda, yIndex: +0 + (k - 1) * lda); } a[k - 1 + (k - 1) * lda] += BLAS1Z.zdotu(km1, work, 1, a, 1, yIndex: +0 + (k - 1) * lda); break; } } kstep = 1; break; } // default: { t = a[k - 1 + k * lda]; Complex ak = a[k - 1 + (k - 1) * lda] / t; Complex akp1 = a[k + k * lda] / t; Complex akkp1 = a[k - 1 + k * lda] / t; d = t * (ak * akp1 - new Complex(1.0, 0.0)); a[k - 1 + (k - 1) * lda] = akp1 / d; a[k + k * lda] = ak / d; a[k - 1 + k * lda] = -akkp1 / d; switch (km1) { case >= 1: { for (i = 1; i <= km1; i++) { work[i - 1] = a[i - 1 + k * lda]; } for (j = 1; j <= km1; j++) { a[j - 1 + k * lda] = BLAS1Z.zdotu(j, a, 1, work, 1, xIndex: +0 + (j - 1) * lda); BLAS1Z.zaxpy(j - 1, work[j - 1], a, 1, ref a, 1, xIndex: +0 + (j - 1) * lda, yIndex: +0 + k * lda); } a[k + k * lda] += BLAS1Z.zdotu(km1, work, 1, a, 1, yIndex: +0 + k * lda); a[k - 1 + k * lda] += BLAS1Z.zdotu(km1, a, 1, a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + k * lda); for (i = 1; i <= km1; i++) { work[i - 1] = a[i - 1 + (k - 1) * lda]; } for (j = 1; j <= km1; j++) { a[j - 1 + (k - 1) * lda] = BLAS1Z.zdotu(j, a, 1, work, 1, xIndex: +0 + (j - 1) * lda); BLAS1Z.zaxpy(j - 1, work[j - 1], a, 1, ref a, 1, xIndex: +0 + (j - 1) * lda, yIndex: +0 + (k - 1) * lda); } a[k - 1 + (k - 1) * lda] += BLAS1Z.zdotu(km1, work, 1, a, 1, yIndex: +0 + (k - 1) * lda); break; } } kstep = 2; break; } } // // Swap. // int ks = Math.Abs(ipvt[k - 1]); if (ks != k) { BLAS1Z.zswap(ks, ref a, 1, ref a, 1, xIndex: +0 + (ks - 1) * lda, yIndex: +0 + (k - 1) * lda); int jb; for (jb = ks; jb <= k; jb++) { j = k + ks - jb; t = a[j - 1 + (k - 1) * lda]; a[j - 1 + (k - 1) * lda] = a[ks - 1 + (j - 1) * lda]; a[ks - 1 + (j - 1) * lda] = t; } if (kstep != 1) { t = a[ks - 1 + k * lda]; a[ks - 1 + k * lda] = a[k - 1 + k * lda]; a[k - 1 + k * lda] = t; } } k += kstep; } break; } } }
public static int zhifa(ref Complex[] a, int lda, int n, ref int[] ipvt) //****************************************************************************80 // // Purpose: // // ZHIFA factors a complex hermitian matrix. // // Discussion: // // ZHIFA performs the factoring by elimination with symmetric pivoting. // // To solve A*X = B, follow ZHIFA by ZHISL. // // To compute inverse(A)*C, follow ZHIFA by ZHISL. // // To compute determinant(A), follow ZHIFA by ZHIDI. // // To compute inertia(A), follow ZHIFA by ZHIDI. // // To compute inverse(A), follow ZHIFA by ZHIDI. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2006 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // // Parameters: // // Input/output, complex <double> A[LDA*N]; on input, the hermitian matrix to be // factored. On output, a block diagonal matrix and the multipliers which // were used to obtain it. The factorization can be written // A = U*D*hermitian(U) where U is a product of permutation and unit upper // triangular matrices, hermitian(U) is the Complex.Conjugateugate transpose of U, and // D is block diagonal with 1 by 1 and 2 by 2 blocks. Only the diagonal // and upper triangle are used. // // Input, int LDA, the leading dimension of A. // // Input, int N, the order of the matrix. // // Output, int IPVT[N], the pivot indices. // // Output, int ZHIFA. // 0, normal value. // K, if the K-th pivot block is singular. This is not an error condition // for this subroutine, but it does indicate that ZHISL or ZHIDI may // divide by zero if called. // { // // Initialize. // // ALPHA is used in choosing pivot block size. // double alpha = (1.0 + Math.Sqrt(17.0)) / 8.0; int info = 0; // // Main loop on K, which goes from N to 1. // int k = n; for (;;) { // // Leave the loop if K = 0 or K = 1. // if (k == 0) { break; } if (k == 1) { ipvt[0] = 1; if (typeMethods.zabs1(a[0 + 0 * lda]) == 0.0) { info = 1; } break; } // // This section of code determines the kind of // elimination to be performed. When it is completed, // KSTEP will be set to the size of the pivot block, and // SWAP will be set to .true. if an interchange is // required. // int km1 = k - 1; double absakk = typeMethods.zabs1(a[k - 1 + (k - 1) * lda]); // // Determine the largest off-diagonal element in column K. // int imax = BLAS1Z.izamax(k - 1, a, 1, index: +0 + (k - 1) * lda); double colmax = typeMethods.zabs1(a[imax - 1 + (k - 1) * lda]); int j; int kstep; bool swap; if (alpha * colmax <= absakk) { kstep = 1; swap = false; } else { // // Determine the largest off-diagonal element in row IMAX. // double rowmax = 0.0; for (j = imax + 1; j <= k; j++) { rowmax = Math.Max(rowmax, typeMethods.zabs1(a[imax - 1 + (j - 1) * lda])); } if (imax != 1) { int jmax = BLAS1Z.izamax(imax - 1, a, 1, index: +0 + (imax - 1) * lda); rowmax = Math.Max(rowmax, typeMethods.zabs1(a[jmax - 1 + (imax - 1) * lda])); } if (alpha * rowmax <= typeMethods.zabs1(a[imax - 1 + (imax - 1) * lda])) { kstep = 1; swap = true; } else if (alpha * colmax * (colmax / rowmax) <= absakk) { kstep = 1; swap = false; } else { kstep = 2; swap = imax != km1; } } switch (Math.Max(absakk, colmax)) { // // Column K is zero. Set INFO and iterate the loop. // case 0.0: ipvt[k - 1] = k; info = k; k -= kstep; continue; } int jj; Complex mulk; Complex t; if (kstep != 2) { switch (swap) { // // 1 x 1 pivot block. // case true: { BLAS1Z.zswap(imax, ref a, 1, ref a, 1, xIndex: +0 + (imax - 1) * lda, yIndex: +0 + (k - 1) * lda); for (jj = imax; jj <= k; jj++) { j = k + imax - jj; t = Complex.Conjugate(a[j - 1 + (k - 1) * lda]); a[j - 1 + (k - 1) * lda] = Complex.Conjugate(a[imax - 1 + (j - 1) * lda]); a[imax - 1 + (j - 1) * lda] = t; } break; } } // // Perform the elimination. // for (jj = 1; jj <= km1; jj++) { j = k - jj; mulk = -a[j - 1 + (k - 1) * lda] / a[k - 1 + (k - 1) * lda]; t = Complex.Conjugate(mulk); BLAS1Z.zaxpy(j, t, a, 1, ref a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + (j - 1) * lda); a[j - 1 + (j - 1) * lda] = new Complex(a[j - 1 + (j - 1) * lda].Real, 0.0); a[j - 1 + (k - 1) * lda] = mulk; } ipvt[k - 1] = swap switch { true => imax, // // Set the pivot array. // _ => k }; } else { switch (swap) { // // 2 x 2 pivot block. // case true: { BLAS1Z.zswap(imax, ref a, 1, ref a, 1, xIndex: +0 + (imax - 1) * lda, yIndex: +0 + (k - 2) * lda); for (jj = imax; jj <= km1; jj++) { j = km1 + imax - jj; t = Complex.Conjugate(a[j - 1 + (k - 2) * lda]); a[j - 1 + (k - 2) * lda] = Complex.Conjugate(a[imax - 1 + (j - 1) * lda]); a[imax - 1 + (j - 1) * lda] = t; } t = a[k - 2 + (k - 1) * lda]; a[k - 2 + (k - 1) * lda] = a[imax - 1 + (k - 1) * lda]; a[imax - 1 + (k - 1) * lda] = t; break; } } switch (k - 2) { // // Perform the elimination. // case > 0: { Complex ak = a[k - 1 + (k - 1) * lda] / a[k - 2 + (k - 1) * lda]; Complex akm1 = a[k - 2 + (k - 2) * lda] / Complex.Conjugate(a[k - 2 + (k - 1) * lda]); Complex denom = new Complex(1.0, 0.0) - ak * akm1; for (jj = 1; jj <= k - 2; jj++) { j = km1 - jj; Complex bk = a[j - 1 + (k - 1) * lda] / a[k - 2 + (k - 1) * lda]; Complex bkm1 = a[j - 1 + (k - 2) * lda] / Complex.Conjugate(a[k - 2 + (k - 1) * lda]); mulk = (akm1 * bk - bkm1) / denom; Complex mulkm1 = (ak * bkm1 - bk) / denom; t = Complex.Conjugate(mulk); BLAS1Z.zaxpy(j, t, a, 1, ref a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + (j - 1) * lda); t = Complex.Conjugate(mulkm1); BLAS1Z.zaxpy(j, t, a, 1, ref a, 1, xIndex: +0 + (k - 2) * lda, yIndex: +0 + (j - 1) * lda); a[j - 1 + (k - 1) * lda] = mulk; a[j - 1 + (k - 2) * lda] = mulkm1; a[j - 1 + (j - 1) * lda] = new Complex(a[j - 1 + (j - 1) * lda].Real, 0.0); } break; } } ipvt[k - 1] = swap switch { // // Set the pivot array. // true => - imax, _ => 1 - k }; ipvt[k - 2] = ipvt[k - 1]; } k -= kstep; } return(info); } }
public static void zgedi(ref Complex[] a, int lda, int n, int[] ipvt, ref Complex[] det, int job) //****************************************************************************80 // // Purpose: // // ZGEDI computes the determinant and inverse of a matrix. // // Discussion: // // The matrix must have been factored by ZGECO or ZGEFA. // // A division by zero will occur if the input factor contains // a zero on the diagonal and the inverse is requested. // It will not occur if the subroutines are called correctly // and if ZGECO has set 0.0 < RCOND or ZGEFA has set // INFO == 0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2006 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // // Parameters: // // Input/output, Complex A[LDA*N]; on input, the factor information // from ZGECO or ZGEFA. On output, the inverse matrix, if it // was requested, // // Input, int LDA, the leading dimension of A. // // Input, int N, the order of the matrix. // // Input, int IPVT[N], the pivot vector from ZGECO or ZGEFA. // // Output, Complex DET[2], the determinant of the original matrix, // if requested. Otherwise not referenced. // Determinant = DET(1) * 10.0**DET(2) with // 1.0 <= typeMethods.zabs1 ( DET(1) ) < 10.0 or DET(1) == 0.0. // Also, DET(2) is strictly real. // // Input, int JOB. // 11, both determinant and inverse. // 01, inverse only. // 10, determinant only. // { int i; // // Compute the determinant. // if (job / 10 != 0) { det[0] = new Complex(1.0, 0.0); det[1] = new Complex(0.0, 0.0); for (i = 1; i <= n; i++) { if (ipvt[i - 1] != i) { det[0] = -det[0]; } det[0] = a[i - 1 + (i - 1) * lda] * det[0]; if (typeMethods.zabs1(det[0]) == 0.0) { break; } while (typeMethods.zabs1(det[0]) < 1.0) { det[0] *= new Complex(10.0, 0.0); det[1] -= new Complex(1.0, 0.0); } while (10.0 <= typeMethods.zabs1(det[0])) { det[0] /= new Complex(10.0, 0.0); det[1] += new Complex(1.0, 0.0); } } } // // Compute inverse(U). // if (job % 10 == 0) { return; } Complex[] work = new Complex[n]; int j; Complex t; int k; for (k = 1; k <= n; k++) { a[k - 1 + (k - 1) * lda] = new Complex(1.0, 0.0) / a[k - 1 + (k - 1) * lda]; t = -a[k - 1 + (k - 1) * lda]; BLAS1Z.zscal(k - 1, t, ref a, 1, index: +0 + (k - 1) * lda); for (j = k + 1; j <= n; j++) { t = a[k - 1 + (j - 1) * lda]; a[k - 1 + (j - 1) * lda] = new Complex(0.0, 0.0); BLAS1Z.zaxpy(k, t, a, 1, ref a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + (j - 1) * lda); } } // // Form inverse(U) * inverse(L). // for (k = n - 1; 1 <= k; k--) { for (i = k + 1; i <= n; i++) { work[i - 1] = a[i - 1 + (k - 1) * lda]; a[i - 1 + (k - 1) * lda] = new Complex(0.0, 0.0); } for (j = k + 1; j <= n; j++) { t = work[j - 1]; BLAS1Z.zaxpy(n, t, a, 1, ref a, 1, xIndex: +0 + (j - 1) * lda, yIndex: +0 + (k - 1) * lda); } int l = ipvt[k - 1]; if (l != k) { BLAS1Z.zswap(n, ref a, 1, ref a, 1, xIndex: +0 + (k - 1) * lda, yIndex: +0 + (l - 1) * lda); } } }
public static void zhpdi(ref Complex[] ap, int n, int[] ipvt, ref double[] det, ref int[] inert, int job) //****************************************************************************80 // // Purpose: // // ZHPDI: determinant, inertia and inverse of a complex hermitian matrix. // // Discussion: // // The routine uses the factors from ZHPFA. // // The matrix is stored in packed form. // // A division by zero will occur if the inverse is requested and ZHPCO has // set RCOND == 0.0 or ZHPFA has set INFO != 0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2006 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // // Parameters: // // Input/output, Complex AP[N*(N+1)/2]; on input, the factored matrix // from ZHPFA. If the inverse was requested, then on output, AP contains // the upper triangle of the inverse of the original matrix, stored in packed // form. The columns of the upper triangle are stored sequentially in a // one-dimensional array. // // Input, int N, the order of the matrix. // // Input, int IPVT[N], the pivot vector from ZHPFA. // // Output, double DET[2], if requested, the determinant of the original // matrix. Determinant = DET(1) * 10.0**DET(2) with // 1.0 <= abs ( DET(1) ) < 10.0 or DET(1) = 0.0. // // Output, int INERT[3], if requested, the inertia of the original matrix. // INERT(1) = number of positive eigenvalues. // INERT(2) = number of negative eigenvalues. // INERT(3) = number of zero eigenvalues. // // Input, int JOB, has the decimal expansion ABC where: // if C != 0, the inverse is computed, // if B != 0, the determinant is computed, // if A != 0, the inertia is computed. // For example, JOB = 111 gives all three. // { double d; int ik; int ikp1; int k; int kk; int kkp1; double t; bool noinv = job % 10 == 0; bool nodet = job % 100 / 10 == 0; bool noert = job % 1000 / 100 == 0; if (!nodet || !noert) { switch (noert) { case false: inert[0] = 0; inert[1] = 0; inert[2] = 0; break; } switch (nodet) { case false: det[0] = 1.0; det[1] = 0.0; break; } t = 0.0; ik = 0; for (k = 1; k <= n; k++) { kk = ik + k; d = ap[kk - 1].Real; switch (ipvt[k - 1]) { // // Check if 1 by 1 // // // 2 by 2 block // Use DET (D S; S C) = ( D / T * C - T ) * T, T = abs ( S ) // to avoid underflow/overflow troubles. // Take two passes through scaling. Use T for flag. // case <= 0 when t == 0.0: ikp1 = ik + k; kkp1 = ikp1 + k; t = Complex.Abs(ap[kkp1 - 1]); d = d / t * ap[kkp1].Real - t; break; case <= 0: d = t; t = 0.0; break; } switch (noert) { case false: switch (d) { case > 0.0: inert[0] += 1; break; case < 0.0: inert[1] += 1; break; case 0.0: inert[2] += 1; break; } break; } switch (nodet) { case false: { det[0] *= d; if (det[0] != 0.0) { while (Math.Abs(det[0]) < 1.0) { det[0] *= 10.0; det[1] -= 1.0; } while (10.0 <= Math.Abs(det[0])) { det[0] /= 10.0; det[1] += 1.0; } } break; } } ik += k; } } switch (noinv) { // // Compute inverse(A). // case false: { Complex[] work = new Complex [n]; k = 1; ik = 0; while (k <= n) { int km1 = k - 1; kk = ik + k; ikp1 = ik + k; kkp1 = ikp1 + k; int kstep; int jk; int j; int ij; switch (ipvt[k - 1]) { // // 1 by 1 // case >= 0: { ap[kk - 1] = new Complex(1.0 / ap[kk - 1].Real, 0.0); switch (km1) { case >= 1: { for (j = 1; j <= km1; j++) { work[j - 1] = ap[ik + j - 1]; } ij = 0; for (j = 1; j <= km1; j++) { jk = ik + j; ap[jk - 1] = BLAS1Z.zdotc(j, ap, 1, work, 1, xIndex: +ij); BLAS1Z.zaxpy(j - 1, work[j - 1], ap, 1, ref ap, 1, xIndex: +ij, yIndex: +ik); ij += j; } ap[kk - 1] += new Complex (BLAS1Z.zdotc(km1, work, 1, ap, 1, yIndex: +ik).Real, 0.0); break; } } kstep = 1; break; } // default: { t = Complex.Abs(ap[kkp1 - 1]); double ak = ap[kk - 1].Real / t; double akp1 = ap[kkp1].Real / t; Complex akkp1 = ap[kkp1 - 1] / t; d = t * (ak * akp1 - 1.0); ap[kk - 1] = new Complex(akp1 / d, 0.0); ap[kkp1] = new Complex(ak / d, 0.0); ap[kkp1 - 1] = -akkp1 / d; switch (km1) { case >= 1: { for (j = 1; j <= km1; j++) { work[j - 1] = ap[ikp1 + j - 1]; } ij = 0; for (j = 1; j <= km1; j++) { int jkp1 = ikp1 + j; ap[jkp1 - 1] = BLAS1Z.zdotc(j, ap, 1, work, 1, xIndex: +ij); BLAS1Z.zaxpy(j - 1, work[j - 1], ap, 1, ref ap, 1, xIndex: +ij, yIndex: +ikp1); ij += j; } ap[kkp1] += new Complex (BLAS1Z.zdotc(km1, work, 1, ap, 1, xIndex: +ikp1).Real, 0.0); ap[kkp1 - 1] += BLAS1Z.zdotc(km1, ap, 1, ap, 1, xIndex: +ik, yIndex: +ikp1); for (j = 1; j <= km1; j++) { work[j - 1] = ap[ik + j - 1]; } ij = 0; for (j = 1; j <= km1; j++) { jk = ik + j; ap[jk - 1] = BLAS1Z.zdotc(j, ap, 1, work, 1, xIndex: +ij); BLAS1Z.zaxpy(j - 1, work[j - 1], ap, 1, ref ap, 1, xIndex: +ij, yIndex: +ik); ij += j; } ap[kk - 1] += new Complex (BLAS1Z.zdotc(km1, work, 1, ap, 1, yIndex: +ik).Real, 0.0); break; } } kstep = 2; break; } } // // Swap // int ks = Math.Abs(ipvt[k - 1]); if (ks != k) { int iks = ks * (ks - 1) / 2; BLAS1Z.zswap(ks, ref ap, 1, ref ap, 1, xIndex: +iks, yIndex: +ik); int ksj = ik + ks; Complex t2; int jb; for (jb = ks; jb <= k; jb++) { j = k + ks - jb; jk = ik + j; t2 = Complex.Conjugate(ap[jk - 1]); ap[jk - 1] = Complex.Conjugate(ap[ksj - 1]); ap[ksj - 1] = t2; ksj -= j - 1; } if (kstep != 1) { int kskp1 = ikp1 + ks; t2 = ap[kskp1 - 1]; ap[kskp1 - 1] = ap[kkp1 - 1]; ap[kkp1 - 1] = t2; } } ik += k; ik = kstep switch { 2 => ik + k + 1, _ => ik }; k += kstep; } break; } } } }