public override void CalcGradients(List <double[]> inputs, Layer outputlayer) { for (int b = 0; b < NN.BatchSize; b++) { //var input = inputs[i]; //if (UsesTanh) { input = Maths.TanhDerriv(inputs[i]); } double[,] Input = Pad(Maths.Convert(inputs[b])); double[,] stochgradients; if (DownOrUp) { stochgradients = Convolve(Maths.Convert(Errors[b]), Input); } else { stochgradients = Convolve(Input, Maths.Convert(Errors[b])); } //Gradients = stochgradients; //Add the stochastic gradients to the batch gradients for (int j = 0; j < Gradients.GetLength(0); j++) { for (int k = 0; k < Gradients.GetLength(1); k++) { Gradients[j, k] += stochgradients[j, k]; } } } }
public override void Calculate(List <double[]> inputs, bool output) { ZVals = new List <double[]>(); for (int i = 0; i < NN.BatchSize; i++) { ZVals.Add(Maths.Convert(Pool(Maths.Convert(inputs[i]), output))); } //If normalizing, do so, but only if it won't return an all-zero matrix if (NN.NormOutputs && ZVals[0].Length > 1) { ZVals = Maths.Normalize(ZVals); } //Use the specified type of activation function if (ActivationFunction == 0) { Values = Maths.Tanh(ZVals); return; } if (ActivationFunction == 1) { Values = Maths.ReLu(ZVals); return; } Values = ZVals; }
/// <summary> /// Calculates the dot product of the kernel and input matrix. /// Matrices should be size [x, y] and [y], respectively, where x is the output size and y is the latent space's size /// </summary> /// <param name="inputs">The input matrix</param> /// <param name="isoutput">Whether to use hyperbolic tangent on the output</param> /// <returns></returns> public override void Calculate(List <double[]> inputs, bool isoutput) { ZVals = new List <double[]>(); for (int b = 0; b < NN.BatchSize; b++) { ZVals.Add(Maths.Convert(DownOrUp ? Convolve(Weights, Pad(Maths.Convert(inputs[b]))) : FullConvolve(Weights, Pad(Maths.Convert(inputs[b]))))); } //If normalizing, do so, but only if it won't return an all-zero matrix if (NN.NormOutputs && ZVals[0].Length > 1) { ZVals = Maths.Normalize(ZVals); } //Use the specified type of activation function if (ActivationFunction == 0) { Values = Maths.Tanh(ZVals); return; } if (ActivationFunction == 1) { Values = Maths.ReLu(ZVals); return; } Values = ZVals; }
/// <summary> /// Test code to use the critic as a classifier /// </summary> public static void TestTrain(NN Critic, bool gradientnorm, int imgspeed, Form1 activeform) { int formupdateiterator = 0; //Test code to generate a new layer with predefined qualities //List<Layer> layers = new List<Layer>() { new ConvolutionLayer(4, 784) { DownOrUp = true, Stride = 1 }.Init(false), new ConvolutionLayer(3, 625){ DownOrUp = true, Stride = 1 }.Init(false), // new ConvolutionLayer(2, 529){ DownOrUp = true, Stride = 1 }.Init(false), new FullyConnectedLayer(100, 484).Init(false), new FullyConnectedLayer(10, 100).Init(true) }; //List<bool> tans = new List<bool>() { true, true, true, true, true}; //List<bool> bns = new List<bool>() { false, false, false, false, false }; //List<bool> ress = new List<bool>() { false, false, false, false, false }; //NN Critic = new NN().Init(layers, tans, ress, bns); while (Training) { double mean = 0; double stddev = 0; double score = 0; double perccorrect = 0; List <List <double[]> > nums = new List <List <double[]> >(); List <int> labels = new List <int>(); Random r = new Random(); for (int i = 0; i < 10; i++) { var temp = new List <double[]>(); for (int j = 0; j < BatchSize; j++) { temp.Add(Maths.Normalize(IO.FindNextNumber(i))); //var tmpmean = Maths.CalcMean(temp[j]); //mean += tmpmean; //stddev += Maths.CalcStdDev(temp[j], tmpmean); } nums.Add(temp); } //Batch normalization //mean /= 10 * batchsize; stddev /= 10 * batchsize; //for (int i = 0; i < 10; i++) //{ // nums[i] = Maths.BatchNormalize(nums[i], mean, stddev); //} //Foreach number for (int i = 0; i < 10; i++) { Critic.Calculate(nums[i]); //Foreach sample in the batch for (int j = 0; j < BatchSize; j++) { double max = -99; int guess = -1; //Foreach output neuron for (int k = 0; k < 10; k++) { var value = Critic.Layers[Critic.NumLayers - 1].Values[j][k]; score += Math.Pow(value - (k == i ? 1d : 0d), 2); if (value > max) { max = value; guess = k; } } perccorrect += guess == i ? 1d : 0d; labels.Add(guess); } Critic.CalcGradients(nums[i], null, i, true); } score /= (10 * BatchSize); perccorrect /= (10 * BatchSize); score = Math.Sqrt(score); Critic.Update(); //Report values to the front end if (Clear) { Critic.Trials = 0; Critic.Error = 0; Critic.PercCorrect = 0; Clear = false; } Critic.Trials++; Critic.Error = (Critic.Error * ((Critic.Trials) / (Critic.Trials + 1d))) + (score * (1d / (Critic.Trials))); Critic.PercCorrect = (Critic.PercCorrect * ((Critic.Trials) / (Critic.Trials + 1d))) + (perccorrect * (1d / (Critic.Trials))); //Update image (if applicable) if (formupdateiterator >= imgspeed) { //Maths.Rescale(list8[0], mean8, stddev8); int index = r.Next(0, 10); var values = Form1.Rescale(Maths.Convert(nums[index][0])); var image = new int[28, 28]; //Convert values to a 2d array for (int i = 0; i < 28; i++) { for (int ii = 0; ii < 28; ii++) { image[ii, i] = (int)values[i, ii]; } } activeform.Invoke((Action) delegate { activeform.image = image; activeform.CScore = Critic.Error.ToString(); activeform.CPerc = Critic.PercCorrect.ToString(); //Critic.Layers[Critic.NumLayers - 1].Values[0][index].ToString(); activeform.Label = labels[index].ToString(); if (Critic.Error > Form1.Cutoff) { Training = false; } if (IO.Reset) { IO.Reset = false; activeform.Epoch++; } }); formupdateiterator = 0; } formupdateiterator++; } activeform.Invoke((Action) delegate { //Notify of being done training activeform.DoneTraining = true; //Reset errors activeform.CScore = null; activeform.GScore = null; }); }
/// <summary> /// Trains the GAN /// </summary> /// <param name="Critic">The network which criticises real and fake images</param> /// <param name="Generator">The network which generates fake images</param> /// <param name="LatentSize">How large the random noise input of the generator is</param> /// <param name="ctg">The Critic To Generator training ratio</param> /// <param name="num">The numerical digit to be learned (0-9)</param> /// <param name="activeform">The form running this method</param> /// <param name="imgspeed">How often generated images are pushed to the front-end</param> public static void Train(NN Critic, NN Generator, int LatentSize, int ctg, Form1 activeform, int imgspeed) { int formupdateiterator = 0; //The generator of the latentspace Random r = new Random(); while (Training) { //Train critic x times per 1 of generator for (int i = 0; i < ctg; i++) { //Batch norm stuff double realmean = 0; double realstddev = 0; double AvgRealScore = 0; double AvgFakeScore = 0; //Generate samples var realsamples = new List <double[]>(); var latentspaces = new List <double[]>(); for (int ii = 0; ii < BatchSize; ii++) { //Find next image realsamples.Add(IO.FindNextNumber(NN.Number)); //Generate latent space for fake image latentspaces.Add(Maths.RandomGaussian(r, LatentSize)); //Calculate values to help scale the fakes var mean = Maths.CalcMean(realsamples[ii]); realmean += mean; realstddev += Maths.CalcStdDev(realsamples[ii], mean); } realmean /= BatchSize; realstddev /= BatchSize; //Batchnorm the samples realsamples = Maths.BatchNormalize(realsamples, realmean, realstddev); var fakesamples = Maths.BatchNormalize(Generator.GenerateSamples(latentspaces), realmean, realstddev); //The RMSE of each network double CError = 0; double GError = 0; //Critic's scores of each type of sample List <double> rscores = new List <double>(); List <double> fscores = new List <double>(); //Real image calculations double RealPercCorrect = 0; Critic.Calculate(realsamples); for (int j = 0; j < BatchSize; j++) { //The score is the value of the output (last) neuron of the critic rscores.Add(Critic.Layers[Critic.NumLayers - 1].Values[j][0]); AvgRealScore += rscores[j]; //Add the squared error CError += Math.Pow(1d - Critic.Layers[Critic.NumLayers - 1].Values[j][0], 2); GError += Math.Pow(-Critic.Layers[Critic.NumLayers - 1].Values[j][0], 2); //Add whether it was correct or not to the total RealPercCorrect += Critic.Layers[Critic.NumLayers - 1].Values[j][0] > 0 ? 1d : 0d; } AvgRealScore /= BatchSize; RealPercCorrect /= BatchSize; //Loss on real images = how accurate the critic is Critic.CalcGradients(realsamples, null, RealPercCorrect, true); //Fake image calculations double FakePercIncorrect = 0; Critic.Calculate(fakesamples); for (int j = 0; j < BatchSize; j++) { //The score is the value of the output (last) neuron of the critic fscores.Add(Critic.Layers[Critic.NumLayers - 1].Values[j][0]); AvgFakeScore += fscores[j]; //Add the squared error CError += Math.Pow(-Critic.Layers[Critic.NumLayers - 1].Values[j][0], 2); GError += Math.Pow(1d - Critic.Layers[Critic.NumLayers - 1].Values[j][0], 2); //Add whether it was correct or not to the total FakePercIncorrect += Critic.Layers[Critic.NumLayers - 1].Values[j][0] > 0 ? 1d : 0d; } AvgFakeScore /= BatchSize; FakePercIncorrect /= BatchSize; //Wasserstein loss on fake images = real % correct - fake % correct Critic.CalcGradients(fakesamples, null, RealPercCorrect - (1 - FakePercIncorrect), true); //Update weights and biases Critic.Update(); //Reset trial number if desired if (Clear) { Critic.Trials = 0; Generator.Trials = 0; Clear = false; } //Critic processes 2 images per 1 the generator does CError = Math.Sqrt(CError / (2 * BatchSize)); GError = Math.Sqrt(GError / BatchSize); //Update errors and % correct values Critic.Error = (Critic.Error * ((Critic.Trials) / (Critic.Trials + 1d))) + (CError * (1d / (Critic.Trials + 1d))); Critic.PercCorrect = (Critic.PercCorrect * ((Critic.Trials) / (Critic.Trials + 1d))) + (RealPercCorrect * (1d / (Critic.Trials + 1d))); Generator.Error = (Generator.Error * ((Generator.Trials) / (Generator.Trials + 1d))) + (GError * (1d / (Generator.Trials + 1))); Generator.PercCorrect = (Generator.PercCorrect * ((Generator.Trials) / (Generator.Trials + 1d))) + (FakePercIncorrect * (1d / (Generator.Trials + 1d))); //Iterate trial count Critic.Trials++; Generator.Trials++; } //Generate samples List <double[]> testlatents = new List <double[]>(); for (int i = 0; i < BatchSize; i++) { testlatents.Add(Maths.RandomGaussian(r, LatentSize)); } var tests = Generator.GenerateSamples(testlatents); //Criticize generated samples Critic.Calculate(tests); //Compute generator's error on the critic's scores double Score = 0; for (int j = 0; j < BatchSize; j++) { Score += Critic.Layers[Critic.NumLayers - 1].Values[j][0] > 0 ? 1 : 0; } //Backprop through the critic to the generator Critic.CalcGradients(tests, null, Score, false); Generator.CalcGradients(testlatents, Critic.Layers[0], Score, true); //Update the generator's weights and biases Generator.Update(); //Update image (if applicable) if (formupdateiterator >= imgspeed) { //Code that converts normalized generator outputs into an image //Changes distribution of output values to 0-255 (brightness) var values = Form1.Rescale(Maths.Convert(tests[0])); var image = new int[28, 28]; //Convert values to a 2d int array for (int i = 0; i < 28; i++) { for (int ii = 0; ii < 28; ii++) { image[ii, i] = (int)values[i, ii]; } } //Report values and image to the front end activeform.Invoke((Action) delegate { activeform.image = image; activeform.CScore = Critic.Error.ToString(); activeform.CPerc = Critic.PercCorrect.ToString(); activeform.GScore = Generator.Error.ToString(); activeform.GPerc = Generator.PercCorrect.ToString(); if (Critic.Error > Form1.Cutoff) { Training = false; } if (IO.Reset) { IO.Reset = false; activeform.Epoch++; } }); formupdateiterator = 0; } formupdateiterator++; } if (Save) { //Save nns IO.Write(Generator, false); IO.Write(Critic, true); } activeform.Invoke((Action) delegate { //Notify of being done training activeform.DoneTraining = true; //Reset errors activeform.CScore = null; activeform.CPerc = null; activeform.GScore = null; activeform.GPerc = null; }); }
/// <summary> /// Computes the error signal of the layer, also gradients if applicable /// </summary> /// <param name="input">Previous layer's values</param> /// <param name="output">Whether the layer is the output layer</param> /// <param name="loss">The loss of the layer</param> /// <param name="calcgradients">Whether or not to calculate gradients in the layer</param> public void Backprop(List <double[]> inputs, Layer outputlayer, double loss, bool calcgradients) { //Reset errors Errors = new List <double[]>(); //Calculate errors if (outputlayer is null) { for (int j = 0; j < inputs.Count; j++) { Errors.Add(new double[Length]); for (int i = 0; i < Length; i++) { //(i == loss ? 1d : 0d) Errors[j][i] = 2d * (Values[j][i] - loss); } } } else { for (int i = 0; i < inputs.Count; i++) { Errors.Add(new double[outputlayer.InputLength]); } if (outputlayer is SumLayer) { //Errors with respect to the output of the convolution //dl/do for (int i = 0; i < outputlayer.ZVals.Count; i++) { for (int k = 0; k < outputlayer.Length; k++) { for (int j = 0; j < outputlayer.InputLength; j++) { Errors[i][j] += outputlayer.Errors[i][k]; } } } } //Apply tanhderriv, if applicable, to the output's zvals var outputZVals = outputlayer.ZVals; if (outputlayer.ActivationFunction == 0) { outputZVals = Maths.TanhDerriv(outputlayer.ZVals); } if (outputlayer.ActivationFunction == 1) { outputZVals = Maths.ReLuDerriv(outputlayer.ZVals); } if (outputlayer is FullyConnectedLayer) { var FCLOutput = outputlayer as FullyConnectedLayer; for (int i = 0; i < outputlayer.ZVals.Count; i++) { for (int k = 0; k < FCLOutput.Length; k++) { for (int j = 0; j < FCLOutput.InputLength; j++) { Errors[i][j] += FCLOutput.Weights[k, j] * outputZVals[i][k] * FCLOutput.Errors[i][k]; } } } } if (outputlayer is ConvolutionLayer) { var CLOutput = outputlayer as ConvolutionLayer; for (int i = 0; i < outputlayer.ZVals.Count; i++) { if ((outputlayer as ConvolutionLayer).DownOrUp) { Errors[i] = Maths.Convert(CLOutput.UnPad(CLOutput.FullConvolve(CLOutput.Weights, Maths.Convert(CLOutput.Errors[i])))); } else { Errors[i] = Maths.Convert(CLOutput.UnPad(CLOutput.Convolve(CLOutput.Weights, Maths.Convert(CLOutput.Errors[i])))); } } //Errors = Maths.Convert(CLOutput.UnPad(CLOutput.FullConvolve(CLOutput.Weights, Maths.Convert(CLOutput.Errors)))); } if (outputlayer is PoolingLayer) { var PLOutput = outputlayer as PoolingLayer; for (int b = 0; b < NN.BatchSize; b++) { if (PLOutput.DownOrUp) { int iterator = 0; var wets = Maths.Convert(PLOutput.Weights); for (int i = 0; i < Length; i++) { if (wets[i] == 0) { continue; } Errors[b][i] = PLOutput.Errors[b][iterator]; iterator++; } } else { //Sum the errors double[,] outputerrors = Maths.Convert(PLOutput.Errors[b]); int oel = outputerrors.GetLength(0); int oew = outputerrors.GetLength(1); double[,] errors = new double[oel / PLOutput.PoolSize, oew / PLOutput.PoolSize]; for (int i = 0; i < oel; i++) { for (int ii = 0; ii < oew; ii++) { errors[i / PLOutput.PoolSize, ii / PLOutput.PoolSize] += outputerrors[i, ii]; } } Errors[b] = Maths.Convert(errors); } } } } //Normalize errors (if applicable) if (NN.NormErrors && Errors[0].Length > 1) { Errors = Maths.Normalize(Errors); } if (calcgradients) { if (this is FullyConnectedLayer) { (this as FullyConnectedLayer).CalcGradients(inputs, outputlayer); } if (this is ConvolutionLayer) { (this as ConvolutionLayer).CalcGradients(inputs, outputlayer); } if (this is PoolingLayer) { return; } if (this is SumLayer) { return; } } }