Пример #1
0
        /**
         * <summary>Select the Leader of the agent</summary>
         */
        void selectLeader()
        {
            leader_ = null;
            for (int neighbor_id = 0; neighbor_id < agentNeighbors_.Count; ++neighbor_id)
            {
                Agent   neighbor           = agentNeighbors_[neighbor_id].Value;
                Vector2 relative_pos       = neighbor.position_ - position_;
                float   alpha              = Vector2.angle(velocity_);
                Vector2 local_relative_pos = Vector2.rotation(relative_pos, -alpha);
                Vector2 local_velocity     = Vector2.rotation(neighbor.velocity_, -alpha);
                float   alpha_v            = Vector2.angle(local_velocity);

                if (local_relative_pos.x() > 0 &&
                    local_relative_pos.x() < 1.5 &&
                    Math.Abs(local_relative_pos.y()) < this.radius_ + neighbor.radius_ &&
                    Math.Abs(alpha_v) < Math.PI / 6 &&
                    local_velocity.x() >= 0
                    )
                {
                    if (leader_ == null)
                    {
                        leader_ = neighbor;
                    }
                    else
                    {
                        Vector2 leader_relative_pos       = leader_.position_ - position_;
                        Vector2 leader_local_relative_pos = Vector2.rotation(leader_relative_pos, -alpha);
                        if (leader_local_relative_pos.x() > local_relative_pos.x())
                        {
                            leader_ = neighbor;
                        }
                    }
                }
            }
        }
Пример #2
0
        /**
         * <summary>Following Behaviour of an agent</summary>
         */
        float followingBehavior()
        {
            // Compute pedestrian angle for local referential
            float alpha = Vector2.angle(velocity_);

            // If there is a leader to follow
            if (leader_ != null)
            {
                if (velocityBuffer_.Count > 0 && leader_.velocityBuffer_.Count > 0)
                {
                    // Compute relative position
                    Vector2 relative_pos       = leader_.position_ - position_;
                    Vector2 local_relative_pos = Vector2.rotation(relative_pos, -alpha);

                    // Compute related velocity with tau delay
                    Vector2 delayed_relative_vel;
                    int     element = (int)Math.Round((velocityBuffer_.Count - 1) - tau_ / sim_.getTimeStep());
                    element = Math.Max(0, element);
                    delayed_relative_vel = leader_.velocityBuffer_[element] - velocityBuffer_[element];
                    Vector2 delayed_local_relative_vel = Vector2.rotation(delayed_relative_vel, -alpha);

                    // Apply following model
                    return(lemercier(delayed_local_relative_vel.x(), local_relative_pos.x()));
                }
                else
                {
                    return(Vector2.rotation(acceleration_, -alpha).x());
                }
            }
            else
            {
                return(Vector2.rotation(acceleration_, -alpha).x());
            }
        }
Пример #3
0
        /**
         * <summary>Apply the behaviour of following to the agent</summary>
         */
        void applyFollowingBehavior(float following_acc)
        {
            float alpha = Vector2.angle(velocity_);
            // If the result lowers the tangential component of the acceleration,
            // apply this tangential acceleration to compute the new velocity
            Vector2 local_acceleration = Vector2.rotation(acceleration_, -alpha);

            if (following_acc < local_acceleration.x())
            {
                Vector2 local_new_acceleration = new Vector2(following_acc, local_acceleration.y());
                acceleration_ = Vector2.rotation(local_new_acceleration, alpha);
                newVelocity_  = velocity_ + acceleration_ * sim_.getTimeStep();
            }
        }
Пример #4
0
        public void detectGroups(bool looped)
        {
            // Deal with looped scenarios
            IList <Agent> agents;

            if (looped)
            {
                agents = virtual_and_agents_;
            }
            else
            {
                agents = agents_;
            }

            // Remove groups from last step
            for (int i = 0; i < agents_.Count; i++)
            {
                agents_[i].groupBelongingTo_ = null;
            }

            groupAgents_.Clear();

            for (int i = 0; i < agents.Count - 1; i++)
            {
                Agent agent = agents[i];
                for (int neighbor_id = 0; neighbor_id < agent.agentNeighbors_.Count; ++neighbor_id)
                {
                    Agent toCompare   = agents[agent.agentNeighbors_[neighbor_id].Value.id_];
                    float distance    = Vector2.abs(agent.position_ - toCompare.position_);
                    float delta_angle = Math.Abs(Vector2.angle(agent.velocity_) - Vector2.angle(toCompare.velocity_));
                    float delta_speed = Math.Max(Vector2.abs(agent.velocity_), Vector2.abs(toCompare.velocity_)) - Math.Min(Vector2.abs(agent.velocity_), Vector2.abs(toCompare.velocity_));
                    // Check distance and velocity  raints
                    if (distance < defaultAgent_.radius_ * 5 &&
                        (delta_angle < Math.PI / 6 || delta_angle > 11 * Math.PI / 6) &&
                        delta_speed < 0.2 * Math.Max(agent.maxSpeed_, toCompare.maxSpeed_)
                        )
                    {
                        mergeGroups(agent, toCompare);
                    }
                }
            }
        }
Пример #5
0
        // Update is called once per frame
        void Update()
        {
            if (!reachedGoal())
            {
                setPreferredVelocities();
                doStep(false);

                for (int i = 0; i < getNumAgents(); ++i)
                {
                    Vector2 position = getPosition(i);
                    agents[i].transform.position = new Vector3(position.x(), 0.5f, position.y());

                    /*  RVO.Vector2 vector2 = sim_.getAgentVelocity(i);
                     * agents[i].rotation = Quaternion.LookRotation(new Vector3(vector2.x_, 0, vector2.y_));*/
                    /*  RVO.Vector2 vector2 = sim_.getAgentVelocity(i);
                     * agents[i].rotation = Quaternion.LookRotation(new Vector3(vector2.x_, 0, vector2.y_));*/
                    setColor(i);
                    float key = -1f;
                    if (sim_.getAgent(i).agentNeighbors_.Count > 0)
                    {
                        key = sim_.getAgent(i).agentNeighbors_[0].Key;
                    }



                    pas = pas + i;
                }
                //Debug.Log("Distance " + Math.Sqrt(Math.Pow(agents[0].position.x - agents[1].position.x,2) + Math.Pow(agents[0].position.y - agents[1].position.y,2)));
                //Debug.Log("Vitesse agent 1 " + Math.Sqrt(Math.Pow(sim_.getAgentVelocity(1).x_,2) + Math.Pow(sim_.getAgentVelocity(1).y_,2)));
                using (TextWriter tw = new StreamWriter(name2, true))
                {
                    tw.WriteLine(sim_.getAgent(0).position_.x_ + "\t" + sim_.getAgent(0).position_.y_ + "\t" + sim_.getAgent(0).agentNeighbors_.Count + "\t" + sim_.getAgent(1).position_.x_ + "\t" + sim_.getAgent(1).position_.y_ + "\t" + sim_.getAgent(1).agentNeighbors_.Count);
                }


                Agent   neighbor = sim_.getAgent(1);
                Vector2 relative_pos;
                float   alpha;
                Vector2 local_relative_pos = new Vector2();
                Agent   neighbor2          = sim_.getAgent(0);;
                Vector2 relative_pos2;
                float   alpha2;
                Vector2 local_relative_pos2 = new Vector2();
                relative_pos        = neighbor.position_ - sim_.getAgent(0).position_;
                alpha               = Vector2.angle(sim_.getAgent(0).velocity_);
                local_relative_pos  = Vector2.rotation(relative_pos, -alpha);
                relative_pos2       = neighbor2.position_ - sim_.getAgent(1).position_;
                alpha2              = Vector2.angle(sim_.getAgent(1).velocity_);
                local_relative_pos2 = Vector2.rotation(relative_pos2, -alpha2);


                using (TextWriter tw = new StreamWriter(name, true))
                {
                    tw.WriteLine(pas + "\t" + sim_.getAgentPosition(0).x() + "\t" + sim_.getAgentPosition(0).y() + "\t" + sim_.getAgentPosition(1).x() + "\t" + sim_.getAgentPosition(1).y()
                                 + "\t" + sim_.getAgentVelocity(0).x() + "\t" + sim_.getAgentVelocity(0).y() + "\t" + sim_.getAgentVelocity(1).x() + "\t" + sim_.getAgentVelocity(1).y() +
                                 "\t" + sim_.getAgentAcceleration(0).x() + "\t" + sim_.getAgentAcceleration(0).y() + "\t" + sim_.getAgentAcceleration(1).x() + "\t" + sim_.getAgentAcceleration(1).y() + "\t"
                                 + local_relative_pos.x() + "\t" + local_relative_pos.y() + "\t" + local_relative_pos2.x() + "\t" + local_relative_pos2.y() + "\t"
                                 + Vector2.angle(sim_.agents_[0].velocity_) * (180 / Math.PI) + "\t"
                                 + Vector2.angle(sim_.agents_[1].velocity_) * (180 / Math.PI) + "\t" + sim_.getAgentLeaderNo(0) + "\t" + sim_.getAgentLeaderNo(1));
                }
            }
            else
            {
                for (int i = 0; i < getNumAgents(); ++i)
                {
                    agents[i].GetComponent <Rigidbody>().isKinematic = true;
                }
            }
        }
Пример #6
0
        internal SuperAgent representGroup(Agent observer)
        {
            // Compute the left & right tangent points obtained for each agent of the group
            // First element of the pair = right tangent
            // Second element of the pair = left tangent
            IList <Pair <Vector2, Vector2> > tangents = new List <Pair <Vector2, Vector2> >();
            IList <Pair <Vector2, Vector2> > radii    = new List <Pair <Vector2, Vector2> >();

            for (int i = 0; i < agents_.Count; i++)
            {
                tangents.Add(computeTangentsPoints(observer, agents_[i]));
                Pair <Vector2, Vector2> rads = new Pair <Vector2, Vector2>();
                rads.First  = tangents[i].First - observer.position_;
                rads.Second = tangents[i].Second - observer.position_;
                radii.Add(rads);
            }
            // Compute the group tangent points (extrema)
            int rightExtremumId = 0;
            int leftExtremumId  = 0;

            for (int i = 1; i < tangents.Count; i++)
            {
                // Comparison
                if (Vector2.isOnTheLeftSide(radii[rightExtremumId].First, radii[i].First))
                {
                    rightExtremumId = i;
                }
                if (Vector2.isOnTheLeftSide(radii[i].Second, radii[leftExtremumId].Second))
                {
                    leftExtremumId = i;
                }
            }
            // If the tangent are taking more than 180°, cannot be considered as a group
            for (int i = 0; i < agents_.Count; i++)
            {
                if (Vector2.isOnTheLeftSide(radii[rightExtremumId].First, radii[i].First))
                {
                    //std::cout << "Problem representing groups : tangent angle > 180°\n";
                    return(new SuperAgent(null));
                }
                if (Vector2.isOnTheLeftSide(radii[i].Second, radii[leftExtremumId].Second))
                {
                    //std::cout << "Problem representing groups : tangent angle > 180°\n";
                    return(new SuperAgent(null));
                }
            }
            // Compute bisector
            Vector2 rightTangent      = Vector2.rotation(radii[rightExtremumId].First, (float)Math.PI / 2);
            Vector2 leftTangent       = Vector2.rotation(radii[leftExtremumId].Second, -(float)Math.PI / 2);
            Vector2 intersectionPoint = Vector2.intersectOf2Lines(tangents[rightExtremumId].First, tangents[rightExtremumId].First + rightTangent,
                                                                  tangents[leftExtremumId].Second, tangents[leftExtremumId].Second + leftTangent);
            // alpha/2 is more usefull than alpha
            float alpha2 = Vector2.angle(Vector2.rotation(tangents[leftExtremumId].Second - intersectionPoint, -Vector2.angle(tangents[rightExtremumId].First - intersectionPoint))) / 2;

            if (alpha2 < 0)
            {
                //std::cout << "Problem representing groups : angle computation\n SHALL NOT HAPPEN !!! \n";
                // But if radii are different or if
                return(new SuperAgent(null));
            }
            Vector2 bisector_normalize_vector = Vector2.normalize(observer.position_ - intersectionPoint);
            // Compute circle
            // The distance between the observer and the circle (along the bisector axis)
            float d = Single.PositiveInfinity;
            float a, b, c, delta, x;
            int   constrainingAgent = 0;

            for (int i = 0; i < agents_.Count; i++)
            {
                Vector2 ic1 = agents_[i].position_ - intersectionPoint;
                a     = 1 - Vector2.sqr((float)Math.Sin(alpha2));
                b     = 2 * (agents_[i].radius_ * (float)Math.Sin(alpha2) - ic1 * bisector_normalize_vector);
                c     = Vector2.absSq(ic1) - Vector2.sqr(agents_[i].radius_);
                delta = Vector2.sqr(b) - 4 * a * c;
                if (delta <= 0)
                {
                    if (delta < -4 * RVO_EPSILON * c)
                    {
                        return(new SuperAgent(null));
                    }
                    else
                    {
                        delta = 0;
                    }
                }
                x = (-b + (float)Math.Sqrt(delta)) / (2 * a);
                if (x < d)
                {
                    d = x;
                    constrainingAgent = i;
                }
            }
            if (d < Vector2.abs(observer.position_ - intersectionPoint) + observer.radius_ + d * Math.Sin(alpha2))
            {
                return(new SuperAgent(null));
            }
            SuperAgent toReturn     = new SuperAgent(sim_);

            toReturn.position_ = intersectionPoint + bisector_normalize_vector * d;
            toReturn.radius_   = d * (float)Math.Sin(alpha2);
            toReturn.velocity_ = agents_[constrainingAgent].velocity_;
            return(toReturn);
        }