Пример #1
0
        /// KQ vs KP.  In general, a win for the stronger side, however, there are a few
        /// important exceptions.  Pawn on 7th rank, A,C,F or H file, with king next can
        /// be a draw, so we scale down to distance between kings only.
        internal static int Endgame_KQKP(int strongerSide, Position pos)
        {
            var weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.QueenValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 0);
            Debug.Assert(pos.non_pawn_material(weakerSide) == 0);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 1);

            Square winnerKSq = pos.king_square(strongerSide);
            Square loserKSq = pos.king_square(weakerSide);
            Square pawnSq = pos.pieceList[weakerSide][PieceTypeC.PAWN][0];

            var result = Constants.QueenValueEndgame - Constants.PawnValueEndgame + DistanceBonus[Utils.square_distance(winnerKSq, loserKSq)];

            if (    Utils.square_distance(loserKSq, pawnSq) == 1
                 && Utils.relative_rank_CS(weakerSide, pawnSq) == RankC.RANK_7)
            {
                File f = Utils.file_of(pawnSq);

                if (f == FileC.FILE_A || f == FileC.FILE_C || f == FileC.FILE_F || f == FileC.FILE_H)
                {
                    result = DistanceBonus[Utils.square_distance(winnerKSq, loserKSq)];
                }
            }

            return strongerSide == pos.sideToMove ? result : -result;
        }
Пример #2
0
        /// K and queen vs K, rook and one or more pawns. It tests for fortress draws with
        /// a rook on the third rank defended by a pawn.
        internal static ScaleFactor Endgame_KQKRPs(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.QueenValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.QUEEN) == 1);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 0);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.ROOK) == 1);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) >= 1);

            Square kingSq = pos.king_square(weakerSide);
            if (Utils.relative_rank_CS(weakerSide, kingSq) <= RankC.RANK_2
                && Utils.relative_rank_CS(weakerSide, pos.king_square(strongerSide)) >= RankC.RANK_4
                && ((pos.pieces_PTC(PieceTypeC.ROOK, weakerSide) & Utils.rank_bb_R(Utils.relative_rank_CR(weakerSide, RankC.RANK_3))) != 0)
                && ((pos.pieces_PTC(PieceTypeC.PAWN, weakerSide) & Utils.rank_bb_R(Utils.relative_rank_CR(weakerSide, RankC.RANK_2))) != 0)
                && ((Position.attacks_from_KING(kingSq) & pos.pieces_PTC(PieceTypeC.PAWN, weakerSide)) != 0)
                )
            {
                Square rsq = pos.pieceList[weakerSide][PieceTypeC.ROOK][0];
                if ((Position.attacks_from_PAWN(rsq, strongerSide) & pos.pieces_PTC(PieceTypeC.PAWN, weakerSide)) != 0)
                    return ScaleFactorC.SCALE_FACTOR_DRAW;
            }
            return ScaleFactorC.SCALE_FACTOR_NONE;
        }
Пример #3
0
 internal static bool is_KXK(int Us, Position pos)
 {
     var Them = (Us == ColorC.WHITE ? ColorC.BLACK : ColorC.WHITE);
     return pos.non_pawn_material(Them) == ValueC.VALUE_ZERO && pos.piece_count(Them, PieceTypeC.PAWN) == 0
            && pos.non_pawn_material(Us) >= Constants.RookValueMidgame;
 }
Пример #4
0
 internal static bool is_KQKRPs(int Us, Position pos)
 {
     var Them = (Us == ColorC.WHITE ? ColorC.BLACK : ColorC.WHITE);
     return pos.piece_count(Us, PieceTypeC.PAWN) == 0 && pos.non_pawn_material(Us) == Constants.QueenValueMidgame
            && pos.piece_count(Us, PieceTypeC.QUEEN) == 1 && pos.piece_count(Them, PieceTypeC.ROOK) == 1
            && pos.piece_count(Them, PieceTypeC.PAWN) >= 1;
 }
Пример #5
0
        /// K, rook and two pawns vs K, rook and one pawn. There is only a single
        /// pattern: If the stronger side has no passed pawns and the defending king
        /// is actively placed, the position is drawish.
        internal static ScaleFactor Endgame_KRPPKRP(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.RookValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 2);
            Debug.Assert(pos.non_pawn_material(weakerSide) == Constants.RookValueMidgame);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 1);

            Square wpsq1 = pos.pieceList[strongerSide][PieceTypeC.PAWN][0];
            Square wpsq2 = pos.pieceList[strongerSide][PieceTypeC.PAWN][1];
            Square bksq = pos.king_square(weakerSide);

            // Does the stronger side have a passed pawn?
            if (pos.pawn_is_passed(strongerSide, wpsq1)
                || pos.pawn_is_passed(strongerSide, wpsq2))
                return ScaleFactorC.SCALE_FACTOR_NONE;

            Rank r = Math.Max(Utils.relative_rank_CS(strongerSide, wpsq1), Utils.relative_rank_CS(strongerSide, wpsq2));

            if (Utils.file_distance(bksq, wpsq1) <= 1
                && Utils.file_distance(bksq, wpsq2) <= 1
                && Utils.relative_rank_CS(strongerSide, bksq) > r)
            {
                switch (r)
                {
                    case RankC.RANK_2: return (10);
                    case RankC.RANK_3: return (10);
                    case RankC.RANK_4: return (15);
                    case RankC.RANK_5: return (20);
                    case RankC.RANK_6: return (40);
                    default: Debug.Assert(false); break;
                }
            }
            return ScaleFactorC.SCALE_FACTOR_NONE;
        }
Пример #6
0
        // evaluate_unstoppable_pawns() evaluates the unstoppable passed pawns for both sides, this is quite
        // conservative and returns a winning score only when we are very sure that the pawn is winning.
        private static int evaluate_unstoppable_pawns(Position pos, EvalInfo ei)
        {
            ulong b, b2, blockers, supporters, queeningPath, candidates;
            int s, blockSq, queeningSquare;
            int c, winnerSide, loserSide;
            bool pathDefended, opposed;
            int pliesToGo = 0, movesToGo, oppMovesToGo = 0, sacptg, blockersCount, minKingDist, kingptg, d;
            int pliesToQueenWHITE = 256, pliesToQueenBLACK = 256, pliesToQueenWinner = 256;

            // Step 1. Hunt for unstoppable passed pawns. If we find at least one,
            // record how many plies are required for promotion.
            for (c = ColorC.WHITE; c <= ColorC.BLACK; c++)
            {
                // Skip if other side has non-pawn pieces
                if (pos.non_pawn_material(Utils.flip_C(c)) != 0)
                {
                    continue;
                }

                b = ei.pi.passed_pawns(c);

                while (b != 0)
                {
                    s = Utils.pop_lsb(ref b);
                    queeningSquare = Utils.relative_square(c, Utils.make_square(Utils.file_of(s), RankC.RANK_8));
                    queeningPath = Utils.forward_bb(c, s);

                    // Compute plies to queening and check direct advancement
                    movesToGo = Utils.rank_distance(s, queeningSquare)
                                - (Utils.relative_rank_CS(c, s) == RankC.RANK_2 ? 1 : 0);
                    oppMovesToGo = Utils.square_distance(pos.king_square(Utils.flip_C(c)), queeningSquare)
                                   - ((c != pos.sideToMove) ? 1 : 0);
                    pathDefended = ((ei.attackedBy[c][0] & queeningPath) == queeningPath);

                    if (movesToGo >= oppMovesToGo && !pathDefended)
                    {
                        continue;
                    }

                    // Opponent king cannot block because path is defended and position
                    // is not in check. So only friendly pieces can be blockers.
                    Debug.Assert(!pos.in_check());
                    Debug.Assert((queeningPath & pos.occupied_squares) == (queeningPath & pos.pieces_C(c)));

                    // Add moves needed to free the path from friendly pieces and retest condition
                    movesToGo += Bitcount.popcount_1s_Max15(queeningPath & pos.pieces_C(c));

                    if (movesToGo >= oppMovesToGo && !pathDefended)
                    {
                        continue;
                    }

                    pliesToGo = 2 * movesToGo - ((c == pos.sideToMove) ? 1 : 0);

                    if (c == ColorC.WHITE)
                    {
                        pliesToQueenWHITE = Math.Min(pliesToQueenWHITE, pliesToGo);
                    }
                    else
                    {
                        pliesToQueenBLACK = Math.Min(pliesToQueenBLACK, pliesToGo);
                    }
                }
            }

            // Step 2. If either side cannot promote at least three plies before the other side then situation
            // becomes too complex and we give up. Otherwise we determine the possibly "winning side"
            if (Math.Abs(pliesToQueenWHITE - pliesToQueenBLACK) < 3)
            {
                return ScoreC.SCORE_ZERO;
            }

            winnerSide = (pliesToQueenWHITE < pliesToQueenBLACK ? ColorC.WHITE : ColorC.BLACK);
            pliesToQueenWinner = (winnerSide == ColorC.WHITE) ? pliesToQueenWHITE : pliesToQueenBLACK;
            loserSide = Utils.flip_C(winnerSide);

            // Step 3. Can the losing side possibly create a new passed pawn and thus prevent the loss?
            b = candidates = pos.pieces_PTC(PieceTypeC.PAWN, loserSide);

            while (b != 0)
            {
                s = Utils.pop_lsb(ref b);

                // Compute plies from queening
                queeningSquare = Utils.relative_square(loserSide, Utils.make_square(Utils.file_of(s), RankC.RANK_8));
                movesToGo = Utils.rank_distance(s, queeningSquare)
                            - ((Utils.relative_rank_CS(loserSide, s) == RankC.RANK_2) ? 1 : 0);
                pliesToGo = 2 * movesToGo - ((loserSide == pos.sideToMove) ? 1 : 0);

                // Check if (without even considering any obstacles) we're too far away or doubled
                if ((pliesToQueenWinner + 3 <= pliesToGo)
                    || ((Utils.forward_bb(loserSide, s) & pos.pieces_PTC(PieceTypeC.PAWN, loserSide)) != 0))
                {
                    Utils.xor_bit(ref candidates, s);
                }
            }

            // If any candidate is already a passed pawn it _may_ promote in time. We give up.
            if ((candidates & ei.pi.passed_pawns(loserSide)) != 0)
            {
                return ScoreC.SCORE_ZERO;
            }

            // Step 4. Check new passed pawn creation through king capturing and pawn sacrifices
            b = candidates;

            while (b != 0)
            {
                s = Utils.pop_lsb(ref b);
                sacptg = blockersCount = 0;
                minKingDist = kingptg = 256;

                // Compute plies from queening
                queeningSquare = Utils.relative_square(loserSide, Utils.make_square(Utils.file_of(s), RankC.RANK_8));
                movesToGo = Utils.rank_distance(s, queeningSquare)
                            - ((Utils.relative_rank_CS(loserSide, s) == RankC.RANK_2) ? 1 : 0);
                pliesToGo = 2 * movesToGo - ((loserSide == pos.sideToMove) ? 1 : 0);

                // Generate list of blocking pawns and supporters
                supporters = Utils.adjacent_files_bb(Utils.file_of(s)) & candidates;
                opposed = (Utils.forward_bb(loserSide, s) & pos.pieces_PTC(PieceTypeC.PAWN, winnerSide)) != 0;
                blockers = Utils.passed_pawn_mask(loserSide, s) & pos.pieces_PTC(PieceTypeC.PAWN, winnerSide);

                Debug.Assert(blockers != 0);

                // How many plies does it take to remove all the blocking pawns?
                while (blockers != 0)
                {
                    blockSq = Utils.pop_lsb(ref blockers);
                    movesToGo = 256;

                    // Check pawns that can give support to overcome obstacle, for instance
                    // black pawns: a4, b4 white: b2 then pawn in b4 is giving support.
                    if (!opposed)
                    {
                        b2 = supporters & Utils.in_front_bb_CS(winnerSide, blockSq + Utils.pawn_push(winnerSide));

                        while (b2 != 0) // This while-loop could be replaced with LSB/MSB (depending on color)
                        {
                            d = Utils.square_distance(blockSq, Utils.pop_lsb(ref b2)) - 2;
                            movesToGo = Math.Min(movesToGo, d);
                        }
                    }

                    // Check pawns that can be sacrificed against the blocking pawn
                    b2 = Utils.attack_span_mask(winnerSide, blockSq) & candidates & ~(1UL << s);

                    while (b2 != 0) // This while-loop could be replaced with LSB/MSB (depending on color)
                    {
                        d = Utils.square_distance(blockSq, Utils.pop_lsb(ref b2)) - 2;
                        movesToGo = Math.Min(movesToGo, d);
                    }

                    // If obstacle can be destroyed with an immediate pawn exchange / sacrifice,
                    // it's not a real obstacle and we have nothing to add to pliesToGo.
                    if (movesToGo <= 0)
                    {
                        continue;
                    }

                    // Plies needed to sacrifice against all the blocking pawns
                    sacptg += movesToGo * 2;
                    blockersCount++;

                    // Plies needed for the king to capture all the blocking pawns
                    d = Utils.square_distance(pos.king_square(loserSide), blockSq);
                    minKingDist = Math.Min(minKingDist, d);
                    kingptg = (minKingDist + blockersCount) * 2;
                }

                // Check if pawn sacrifice plan _may_ save the day
                if (pliesToQueenWinner + 3 > pliesToGo + sacptg)
                {
                    return ScoreC.SCORE_ZERO;
                }

                // Check if king capture plan _may_ save the day (contains some false positives)
                if (pliesToQueenWinner + 3 > pliesToGo + kingptg)
                {
                    return ScoreC.SCORE_ZERO;
                }
            }

            // Winning pawn is unstoppable and will promote as first, return big score
            var score = Utils.make_score(0, 0x500 - 0x20 * pliesToQueenWinner);
            return winnerSide == ColorC.WHITE ? score : -score;
        }
Пример #7
0
        /// K, bishop and two pawns vs K and bishop. It detects a few basic draws with
        /// opposite-colored bishops.
        internal static ScaleFactor Endgame_KBPPKB(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.BISHOP) == 1);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 2);
            Debug.Assert(pos.non_pawn_material(weakerSide) == Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.BISHOP) == 1);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);

            Square wbsq = pos.pieceList[strongerSide][PieceTypeC.BISHOP][0];
            Square bbsq = pos.pieceList[weakerSide][PieceTypeC.BISHOP][0];

            if (!Utils.opposite_colors(wbsq, bbsq))
                return ScaleFactorC.SCALE_FACTOR_NONE;

            Square ksq = pos.king_square(weakerSide);
            Square psq1 = pos.pieceList[strongerSide][PieceTypeC.PAWN][0];
            Square psq2 = pos.pieceList[strongerSide][PieceTypeC.PAWN][1];
            Rank r1 = Utils.rank_of(psq1);
            Rank r2 = Utils.rank_of(psq2);
            Square blockSq1, blockSq2;

            if (Utils.relative_rank_CS(strongerSide, psq1) > Utils.relative_rank_CS(strongerSide, psq2))
            {
                blockSq1 = psq1 + Utils.pawn_push(strongerSide);
                blockSq2 = Utils.make_square(Utils.file_of(psq2), Utils.rank_of(psq1));
            }
            else
            {
                blockSq1 = psq2 + Utils.pawn_push(strongerSide);
                blockSq2 = Utils.make_square(Utils.file_of(psq1), Utils.rank_of(psq2));
            }

            switch (Utils.file_distance(psq1, psq2))
            {
                case 0:
                    // Both pawns are on the same file. Easy draw if defender firmly controls
                    // some square in the frontmost pawn's path.
                    if (Utils.file_of(ksq) == Utils.file_of(blockSq1)
                  && Utils.relative_rank_CS(strongerSide, ksq) >= Utils.relative_rank_CS(strongerSide, blockSq1)
                  && Utils.opposite_colors(ksq, wbsq))
                        return ScaleFactorC.SCALE_FACTOR_DRAW;
                    else
                        return ScaleFactorC.SCALE_FACTOR_NONE;

                case 1:
                    // Pawns on adjacent files. Draw if defender firmly controls the square
                    // in front of the frontmost pawn's path, and the square diagonally behind
                    // this square on the file of the other pawn.
                    if (ksq == blockSq1
                        && Utils.opposite_colors(ksq, wbsq)
                        && (bbsq == blockSq2
                            || (((pos.attacks_from_BISHOP(blockSq2) & pos.pieces_PTC(PieceTypeC.BISHOP, weakerSide))) != 0)
                            || Math.Abs(r1 - r2) >= 2))
                        return ScaleFactorC.SCALE_FACTOR_DRAW;

                    else if (ksq == blockSq2
                             && Utils.opposite_colors(ksq, wbsq)
                             && (bbsq == blockSq1
                                 || (((pos.attacks_from_BISHOP(blockSq1) & pos.pieces_PTC(PieceTypeC.BISHOP, weakerSide)))) != 0))
                        return ScaleFactorC.SCALE_FACTOR_DRAW;
                    else
                        return ScaleFactorC.SCALE_FACTOR_NONE;

                default:
                    // The pawns are not on the same file or adjacent files. No scaling.
                    return ScaleFactorC.SCALE_FACTOR_NONE;
            }
        }
Пример #8
0
        /// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without
        /// a bitbase. The function below returns drawish scores when the pawn is
        /// far advanced with support of the king, while the attacking king is far
        /// away.
        internal static Value Endgame_KRKP(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.RookValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 0);
            Debug.Assert(pos.non_pawn_material(weakerSide) == 0);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 1);

            Square wksq, wrsq, bksq, bpsq;
            int tempo = (pos.sideToMove == strongerSide ? 1 : 0);

            wksq = pos.king_square(strongerSide);
            wrsq = pos.pieceList[strongerSide][PieceTypeC.ROOK][0];
            bksq = pos.king_square(weakerSide);
            bpsq = pos.pieceList[weakerSide][PieceTypeC.PAWN][0];

            if (strongerSide == ColorC.BLACK)
            {
                wksq = Utils.flip_S(wksq);
                wrsq = Utils.flip_S(wrsq);
                bksq = Utils.flip_S(bksq);
                bpsq = Utils.flip_S(bpsq);
            }

            Square queeningSq = Utils.make_square(Utils.file_of(bpsq), RankC.RANK_1);
            Value result;

            // If the stronger side's king is in front of the pawn, it's a win
            if (wksq < bpsq && Utils.file_of(wksq) == Utils.file_of(bpsq))
                result = Constants.RookValueEndgame - (Utils.square_distance(wksq, bpsq));

            // If the weaker side's king is too far from the pawn and the rook,
            // it's a win
            else if (Utils.square_distance(bksq, bpsq) - (tempo ^ 1) >= 3
                     && Utils.square_distance(bksq, wrsq) >= 3)
                result = Constants.RookValueEndgame - (Utils.square_distance(wksq, bpsq));

            // If the pawn is far advanced and supported by the defending king,
            // the position is drawish
            else if (Utils.rank_of(bksq) <= RankC.RANK_3
                     && Utils.square_distance(bksq, bpsq) == 1
                     && Utils.rank_of(wksq) >= RankC.RANK_4
                     && Utils.square_distance(wksq, bpsq) - tempo > 2)
                result = (80 - Utils.square_distance(wksq, bpsq) * 8);

            else
                result = (200)
                        - (Utils.square_distance(wksq, bpsq + SquareC.DELTA_S) * 8)
                        + (Utils.square_distance(bksq, bpsq + SquareC.DELTA_S) * 8)
                        + (Utils.square_distance(bpsq, queeningSq) * 8);

            return strongerSide == pos.sideToMove ? result : -result;
        }
Пример #9
0
        /// K, bishop and a pawn vs K and a bishop. There are two rules: If the defending
        /// king is somewhere along the path of the pawn, and the square of the king is
        /// not of the same color as the stronger side's bishop, it's a draw. If the two
        /// bishops have opposite color, it's almost always a draw.
        internal static ScaleFactor Endgame_KBPKB(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.BISHOP) == 1);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 1);
            Debug.Assert(pos.non_pawn_material(weakerSide) == Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.BISHOP) == 1);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);

            Square pawnSq = pos.pieceList[strongerSide][PieceTypeC.PAWN][0];
            Square strongerBishopSq = pos.pieceList[strongerSide][PieceTypeC.BISHOP][0];
            Square weakerBishopSq = pos.pieceList[weakerSide][PieceTypeC.BISHOP][0];
            Square weakerKingSq = pos.king_square(weakerSide);

            // Case 1: Defending king blocks the pawn, and cannot be driven away
            if (Utils.file_of(weakerKingSq) == Utils.file_of(pawnSq)
                && Utils.relative_rank_CS(strongerSide, pawnSq) < Utils.relative_rank_CS(strongerSide, weakerKingSq)
                && (Utils.opposite_colors(weakerKingSq, strongerBishopSq)
                    || Utils.relative_rank_CS(strongerSide, weakerKingSq) <= RankC.RANK_6))
                return ScaleFactorC.SCALE_FACTOR_DRAW;

            // Case 2: Opposite colored bishops
            if (Utils.opposite_colors(strongerBishopSq, weakerBishopSq))
            {
                // We assume that the position is drawn in the following three situations:
                //
                //   a. The pawn is on rank 5 or further back.
                //   b. The defending king is somewhere in the pawn's path.
                //   c. The defending bishop attacks some square along the pawn's path,
                //      and is at least three squares away from the pawn.
                //
                // These rules are probably not perfect, but in practice they work
                // reasonably well.

                if (Utils.relative_rank_CS(strongerSide, pawnSq) <= RankC.RANK_5)
                    return ScaleFactorC.SCALE_FACTOR_DRAW;
                else
                {
                    Bitboard path = Utils.forward_bb(strongerSide, pawnSq);

                    if ((path & pos.pieces_PTC(PieceTypeC.KING, weakerSide)) != 0)
                        return ScaleFactorC.SCALE_FACTOR_DRAW;

                    if (((pos.attacks_from_BISHOP(weakerBishopSq) & path) != 0)
                        && Utils.square_distance(weakerBishopSq, pawnSq) >= 3)
                        return ScaleFactorC.SCALE_FACTOR_DRAW;
                }
            }
            return ScaleFactorC.SCALE_FACTOR_NONE;
        }
Пример #10
0
        /// K, bishop and a pawn vs K and knight. There is a single rule: If the defending
        /// king is somewhere along the path of the pawn, and the square of the king is
        /// not of the same color as the stronger side's bishop, it's a draw.
        internal static ScaleFactor Endgame_KBPKN(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.BISHOP) == 1);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 1);
            Debug.Assert(pos.non_pawn_material(weakerSide) == Constants.KnightValueMidgame);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.KNIGHT) == 1);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);

            Square pawnSq = pos.pieceList[strongerSide][PieceTypeC.PAWN][0];
            Square strongerBishopSq = pos.pieceList[strongerSide][PieceTypeC.BISHOP][0];
            Square weakerKingSq = pos.king_square(weakerSide);

            if (Utils.file_of(weakerKingSq) == Utils.file_of(pawnSq)
                && Utils.relative_rank_CS(strongerSide, pawnSq) < Utils.relative_rank_CS(strongerSide, weakerKingSq)
                && (Utils.opposite_colors(weakerKingSq, strongerBishopSq)
                    || Utils.relative_rank_CS(strongerSide, weakerKingSq) <= RankC.RANK_6))
                return ScaleFactorC.SCALE_FACTOR_DRAW;

            return ScaleFactorC.SCALE_FACTOR_NONE;
        }
Пример #11
0
        /// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
        /// defending king towards a corner square of the right color.
        internal static Value Endgame_KBNK(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(weakerSide) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.KnightValueMidgame + Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.BISHOP) == 1);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.KNIGHT) == 1);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 0);

            Square winnerKSq = pos.king_square(strongerSide);
            Square loserKSq = pos.king_square(weakerSide);
            Square bishopSquare = pos.pieceList[strongerSide][PieceTypeC.BISHOP][0];

            // kbnk_mate_table() tries to drive toward corners A1 or H8,
            // if we have a bishop that cannot reach the above squares we
            // mirror the kings so to drive enemy toward corners A8 or H1.
            if (Utils.opposite_colors(bishopSquare, SquareC.SQ_A1))
            {
                winnerKSq = Utils.mirror(winnerKSq);
                loserKSq = Utils.mirror(loserKSq);
            }

            Value result = ValueC.VALUE_KNOWN_WIN
                          + DistanceBonus[Utils.square_distance(winnerKSq, loserKSq)]
                          + KBNKMateTable[loserKSq];

            return strongerSide == pos.sideToMove ? result : -result;
        }
Пример #12
0
        internal static Value Endgame_KBBKN(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.BISHOP) == 2);
            Debug.Assert(pos.non_pawn_material(strongerSide) == 2 * Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.KNIGHT) == 1);
            Debug.Assert(pos.non_pawn_material(weakerSide) == Constants.KnightValueMidgame);
            Debug.Assert(pos.pieces_PT(PieceTypeC.PAWN) == 0);

            Value result = Constants.BishopValueEndgame;
            Square wksq = pos.king_square(strongerSide);
            Square bksq = pos.king_square(weakerSide);
            Square nsq = pos.pieceList[weakerSide][PieceTypeC.KNIGHT][0];

            // Bonus for attacking king close to defending king
            result += (DistanceBonus[Utils.square_distance(wksq, bksq)]);

            // Bonus for driving the defending king and knight apart
            result += (Utils.square_distance(bksq, nsq) * 32);

            // Bonus for restricting the knight's mobility
            result += ((8 - Bitcount.popcount_1s_Max15(Position.attacks_from_KNIGHT(nsq))) * 8);

            return strongerSide == pos.sideToMove ? result : -result;
        }
Пример #13
0
        // search<>() is the main search function for both PV and non-PV nodes and for
        // normal and SplitPoint nodes. When called just after a split point the search
        // is simpler because we have already probed the hash table, done a null move
        // search, and searched the first move before splitting, we don't have to repeat
        // all this work again. We also don't need to store anything to the hash table
        // here: This is taken care of after we return from the split point.
        internal static int search(int NT, Position pos, Stack[] ss, int ssPos, int alpha, int beta, int depth)
        {
            var PvNode = (NT == NodeTypeC.PV || NT == NodeTypeC.Root || NT == NodeTypeC.SplitPointPV
                          || NT == NodeTypeC.SplitPointRoot);
            var SpNode = (NT == NodeTypeC.SplitPointPV || NT == NodeTypeC.SplitPointNonPV
                          || NT == NodeTypeC.SplitPointRoot);
            var RootNode = (NT == NodeTypeC.Root || NT == NodeTypeC.SplitPointRoot);

            Debug.Assert(alpha >= -ValueC.VALUE_INFINITE && alpha < beta && beta <= ValueC.VALUE_INFINITE);
            Debug.Assert((PvNode || alpha == beta - 1));
            Debug.Assert(depth > DepthC.DEPTH_ZERO);

            var ms = MovesSearchedBroker.GetObject();
            var movesSearched = ms.movesSearched;

            StateInfo st = null;
            var tte = TT.StaticEntry;
            var tteHasValue = false;
            uint ttePos = 0;
            ulong posKey = 0;
            int ttMove, move, excludedMove, bestMove, threatMove;
            int ext, newDepth;
            int bestValue, value, ttValue;
            int eval = 0, nullValue, futilityValue;
            bool inCheck, givesCheck, pvMove, singularExtensionNode;
            bool captureOrPromotion, dangerous, doFullDepthSearch;
            int moveCount = 0, playedMoveCount = 0;
            SplitPoint sp = null;

            // Step 1. Initialize node
            var thisThread = pos.this_thread();
            //var threatExtension = false;
            inCheck = pos.in_check();
            
            if (SpNode)
            {
                sp = ss[ssPos].sp;
                bestMove = sp.bestMove;
                threatMove = sp.threatMove;
                bestValue = sp.bestValue;
                ttMove = excludedMove = MoveC.MOVE_NONE;
                ttValue = ValueC.VALUE_NONE;

                Debug.Assert(sp.bestValue > -ValueC.VALUE_INFINITE && sp.moveCount > 0);

                goto split_point_start;
            }

            bestValue = -ValueC.VALUE_INFINITE;
            ss[ssPos].currentMove = threatMove = ss[ssPos + 1].excludedMove = bestMove = MoveC.MOVE_NONE;
            ss[ssPos].ply = ss[ssPos - 1].ply + 1;
            ss[ssPos + 1].skipNullMove = 0;
            ss[ssPos + 1].reduction = DepthC.DEPTH_ZERO;
            ss[ssPos + 2].killers0 = ss[ssPos + 2].killers1 = MoveC.MOVE_NONE;

            // Used to send selDepth info to GUI
            if (PvNode && thisThread.maxPly < ss[ssPos].ply)
            {
                thisThread.maxPly = ss[ssPos].ply;
            }
            
            if (!RootNode)
            {
                // Step 2. Check for aborted search and immediate draw
                if ((SignalsStop || pos.is_draw(false) || ss[ssPos].ply > Constants.MAX_PLY))
                {
                    MovesSearchedBroker.Free();
                    return DrawValue[pos.sideToMove];
                }

                // Step 3. Mate distance pruning. Even if we mate at the next move our score
                // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
                // a shorter mate was found upward in the tree then there is no need to search
                // further, we will never beat current alpha. Same logic but with reversed signs
                // applies also in the opposite condition of being mated instead of giving mate,
                // in this case return a fail-high score.
                alpha = Math.Max(Utils.mated_in(ss[ssPos].ply), alpha);
                beta = Math.Min(Utils.mate_in(ss[ssPos].ply + 1), beta);
                if (alpha >= beta)
                {
                    MovesSearchedBroker.Free();
                    return alpha;
                }
            }

            // Step 4. Transposition table lookup
            // We don't want the score of a partial search to overwrite a previous full search
            // TT value, so we use a different position key in case of an excluded move.
            excludedMove = ss[ssPos].excludedMove;
            posKey = (excludedMove != 0) ? pos.exclusion_key() : pos.key();
            tteHasValue = TT.probe(posKey, ref ttePos, out tte);
            ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tteHasValue ? tte.move() : MoveC.MOVE_NONE;
            ttValue = tteHasValue ? value_from_tt(tte.value(), ss[ssPos].ply) : ValueC.VALUE_NONE;

            // At PV nodes we check for exact scores, while at non-PV nodes we check for
            // a fail high/low. Biggest advantage at probing at PV nodes is to have a
            // smooth experience in analysis mode. We don't probe at Root nodes otherwise
            // we should also update RootMoveList to avoid bogus output.
            if (!RootNode 
                && tteHasValue 
                && tte.depth() >= depth
                && ttValue != ValueC.VALUE_NONE // Only in case of TT access race
                && (PvNode ? tte.type() == Bound.BOUND_EXACT 
                            : ttValue >= beta ? ((tte.type() & Bound.BOUND_LOWER) != 0 )
                                              : ((tte.type() & Bound.BOUND_UPPER) != 0)))
            {
                Debug.Assert(ttValue != ValueC.VALUE_NONE); // Due to depth > DEPTH_NONE

                TT.table[ttePos].set_generation(TT.generation);
                ss[ssPos].currentMove = ttMove; // Can be MOVE_NONE

                if (ttValue >= beta && (ttMove != 0) && !pos.is_capture_or_promotion(ttMove)
                    && ttMove != ss[ssPos].killers0)
                {
                    ss[ssPos].killers1 = ss[ssPos].killers0;
                    ss[ssPos].killers0 = ttMove;
                }

                MovesSearchedBroker.Free();
                return ttValue;
            }

            // Step 5. Evaluate the position statically and update parentSplitPoint's gain statistics
            if (inCheck)
            {
                ss[ssPos].staticEval = ss[ssPos].evalMargin = eval = ValueC.VALUE_NONE;
            }
            else if (tteHasValue)
            {
                // Never assume anything on values stored in TT
                if ((ss[ssPos].staticEval = eval = tte.eval_value()) == ValueC.VALUE_NONE
                    || (ss[ssPos].evalMargin = tte.eval_margin()) == ValueC.VALUE_NONE)
                {
                    eval = ss[ssPos].staticEval = Evaluate.do_evaluate(false, pos, ref ss[ssPos].evalMargin);
                }

                // Can ttValue be used as a better position evaluation?
                if (ttValue != ValueC.VALUE_NONE)
                {
                    if ((((tte.type() & Bound.BOUND_LOWER) != 0) && ttValue > eval)
                        || (((tte.type() & Bound.BOUND_UPPER) != 0) && ttValue < eval))
                    {
                        eval = ttValue;
                    }
                }
            }
            else
            {
                eval = ss[ssPos].staticEval = Evaluate.do_evaluate(false, pos, ref ss[ssPos].evalMargin);
                TT.store(
                    posKey,
                    ValueC.VALUE_NONE,
                    Bound.BOUND_NONE,
                    DepthC.DEPTH_NONE,
                    MoveC.MOVE_NONE,
                    ss[ssPos].staticEval,
                    ss[ssPos].evalMargin);
            }

            // Update gain for the parentSplitPoint non-capture move given the static position
            // evaluation before and after the move.
            if ((move = ss[ssPos - 1].currentMove) != MoveC.MOVE_NULL && ss[ssPos - 1].staticEval != ValueC.VALUE_NONE
                && ss[ssPos].staticEval != ValueC.VALUE_NONE && (pos.captured_piece_type() == 0) && Utils.type_of_move(move) == MoveTypeC.NORMAL)
            {
                var to = Utils.to_sq(move);
                H.update_gain(pos.piece_on(to), to, -ss[ssPos - 1].staticEval - ss[ssPos].staticEval);
            }

            // Step 6. Razoring (is omitted in PV nodes)
            if (!PvNode && !inCheck && depth < 4 * DepthC.ONE_PLY && eval + razor_margin(depth) < beta
                && ttMove == MoveC.MOVE_NONE && Math.Abs(beta) < ValueC.VALUE_MATE_IN_MAX_PLY
                && !pos.pawn_on_7th(pos.sideToMove))
            {
                var rbeta = beta - razor_margin(depth);
                var v = qsearch(NodeTypeC.NonPV, false, pos, ss, ssPos, rbeta - 1, rbeta, DepthC.DEPTH_ZERO);
                if (v < rbeta)
                {
                    // Logically we should return (v + razor_margin(depth)), but
                    // surprisingly this did slightly weaker in tests.
                    MovesSearchedBroker.Free();
                    return v;
                }
            }

            // Step 7. Static null move pruning (is omitted in PV nodes)
            // We're betting that the opponent doesn't have a move that will reduce
            // the score by more than futility_margin(depth) if we do a null move.
            if (!PvNode && !inCheck && (ss[ssPos].skipNullMove == 0) && depth < 4 * DepthC.ONE_PLY
                && Math.Abs(beta) < ValueC.VALUE_MATE_IN_MAX_PLY && eval - FutilityMargins[depth][0] >= beta
                && (pos.non_pawn_material(pos.sideToMove) != 0))
            {
                MovesSearchedBroker.Free();
                return eval - FutilityMargins[depth][0];
            }

            // Step 8. Null move search with verification search (is omitted in PV nodes)
            if (!PvNode && !inCheck && (ss[ssPos].skipNullMove == 0) && depth > DepthC.ONE_PLY && eval >= beta
                && Math.Abs(beta) < ValueC.VALUE_MATE_IN_MAX_PLY && (pos.non_pawn_material(pos.sideToMove) != 0))
            {
                ss[ssPos].currentMove = MoveC.MOVE_NULL;

                // Null move dynamic reduction based on depth
                Depth R = 3 * DepthC.ONE_PLY + depth / 4;

                // Null move dynamic reduction based on value
                if (eval - Constants.PawnValueMidgame > beta)
                {
                    R += DepthC.ONE_PLY;
                }

                if (st == null)
                {
                    st = StateInfoBroker.GetObject();
                }
                pos.do_null_move(st);
                ss[ssPos + 1].skipNullMove = 1;
                
                nullValue = depth - R < DepthC.ONE_PLY ? -qsearch(NodeTypeC.NonPV, false, pos, ss, ssPos + 1, -beta, -alpha, DepthC.DEPTH_ZERO)
                                      : -search(NodeTypeC.NonPV, pos, ss, ssPos + 1, -beta, -alpha, depth - R);

                ss[ssPos + 1].skipNullMove = 0;
                pos.undo_null_move(st);

                if (nullValue >= beta)
                {
                    // Do not return unproven mate scores
                    if (nullValue >= ValueC.VALUE_MATE_IN_MAX_PLY)
                    {
                        nullValue = beta;
                    }

                    if (depth < 6 * DepthC.ONE_PLY)
                    {
                        if (st != null)
                        {
                            st.previous = null;
                            StateInfoBroker.Free();
                        }
                        MovesSearchedBroker.Free();
                        return nullValue;
                    }

                    // Do verification search at high depths
                    ss[ssPos].skipNullMove = 1;
                    var v = search(NodeTypeC.NonPV, pos, ss, ssPos, alpha, beta, depth - R);
                    ss[ssPos].skipNullMove = 0;

                    if (v >= beta)
                    {
                        if (st != null)
                        {
                            st.previous = null;
                            StateInfoBroker.Free();
                        }
                        MovesSearchedBroker.Free();
                        return nullValue;
                    }
                }
                else
                {
                    // The null move failed low, which means that we may be faced with
                    // some kind of threat. If the previous move was reduced, check if
                    // the move that refuted the null move was somehow connected to the
                    // the move that refuted the null move was somehow connected to the
                    // move which was reduced. If a connection is found extend moves that
                    // defend against threat.
                    threatMove = ss[ssPos + 1].currentMove;

                    if (depth < 5 * DepthC.ONE_PLY && (ss[ssPos - 1].reduction != 0) && threatMove != MoveC.MOVE_NONE
                        && allows(pos, ss[ssPos - 1].currentMove, threatMove))
                    {
                        //threatExtension = true;
                        
                        if (st != null)
                        {
                            st.previous = null;
                            StateInfoBroker.Free();
                        }
                        MovesSearchedBroker.Free();
                        return beta - 1;
                    }
                }
            }

            // Step 9. ProbCut (is omitted in PV nodes)
            // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
            // and a reduced search returns a value much above beta, we can (almost) safely
            // prune the previous move.
            if (!PvNode && !inCheck && excludedMove == MoveC.MOVE_NONE && depth >= 4 * DepthC.ONE_PLY + DepthC.ONE_PLY
                && (ss[ssPos].skipNullMove == 0) && Math.Abs(beta) < ValueC.VALUE_MATE_IN_MAX_PLY)
            {
                var rbeta = beta + 200;
                var rdepth = depth - DepthC.ONE_PLY - 3 * DepthC.ONE_PLY;

                Debug.Assert(rdepth >= DepthC.ONE_PLY);
                Debug.Assert(ss[ssPos - 1].currentMove != MoveC.MOVE_NONE);
                Debug.Assert(ss[ssPos - 1].currentMove != MoveC.MOVE_NULL);

                var mp2 = MovePickerBroker.GetObject();
                mp2.MovePickerC(pos, ttMove, H, pos.captured_piece_type());
                var ci2 = CheckInfoBroker.GetObject();
                ci2.CreateCheckInfo(pos);

                while ((move = mp2.next_move()) != MoveC.MOVE_NONE)
                {
                    if (pos.pl_move_is_legal(move, ci2.pinned))
                    {
                        ss[ssPos].currentMove = move;
                        if (st == null)
                        {
                            st = StateInfoBroker.GetObject();
                        }
                        pos.do_move(move, st, ci2, pos.move_gives_check(move, ci2));
                        value = -search(NodeTypeC.NonPV, pos, ss, ssPos + 1, -rbeta, -rbeta + 1, rdepth);
                        pos.undo_move(move);
                        if (value >= rbeta)
                        {
                            if (st != null)
                            {
                                st.previous = null;
                                StateInfoBroker.Free();
                            }
                            CheckInfoBroker.Free();
                            MovePickerBroker.Free(mp2);
                            MovesSearchedBroker.Free();
                            return value;
                        }
                    }
                }

                CheckInfoBroker.Free();
                MovePickerBroker.Free(mp2);
            }

            // Step 10. Internal iterative deepening
            if (ttMove == MoveC.MOVE_NONE && depth >= (PvNode ? 5 * DepthC.ONE_PLY : 8 * DepthC.ONE_PLY)
                && (PvNode || (!inCheck && ss[ssPos].staticEval + 256 >= beta)))
            {
                var d = (PvNode ? depth - 2 * DepthC.ONE_PLY : depth / 2);

                ss[ssPos].skipNullMove = 1;
                search(PvNode ? NodeTypeC.PV : NodeTypeC.NonPV, pos, ss, ssPos, alpha, beta, d);
                ss[ssPos].skipNullMove = 0;

                tteHasValue = TT.probe(posKey, ref ttePos, out tte);
                ttMove = (tteHasValue) ? tte.move() : MoveC.MOVE_NONE;
            }
            else
            {
                // Re-read (needed as TTEntry is a struct in the port)
                if ((tteHasValue) && (TT.table[ttePos].key == tte.key))
                {
                    tte = TT.table[ttePos];
                }
            }

            split_point_start: // At split points actual search starts from here

            var mp = MovePickerBroker.GetObject();
            mp.MovePickerC(
                pos,
                ttMove,
                depth,
                H,
                ss[ssPos],
                PvNode ? -ValueC.VALUE_INFINITE : beta,
                SpNode ? ss[ssPos].sp.movePicker : null);
            var ci = CheckInfoBroker.GetObject();
            ci.CreateCheckInfo(pos);
            
            value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
            singularExtensionNode = !RootNode && !SpNode && depth >= (PvNode ? 6 * DepthC.ONE_PLY : 8 * DepthC.ONE_PLY)
                                    && ttMove != MoveC.MOVE_NONE && (excludedMove == 0)
                                    // Recursive singular search is not allowed
                                    && ((tte.type() & Bound.BOUND_LOWER) != 0) // FIXME: uninitialized!
                                    && tte.depth() >= depth - 3 * DepthC.ONE_PLY;

            // Step 11. Loop through moves
            // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
            while ((move = mp.next_move()) != MoveC.MOVE_NONE && !thisThread.cutoff_occurred()
                   && !SignalsStop)
            {
                Debug.Assert(Utils.is_ok_M(move));

                if (move == excludedMove)
                {
                    continue;
                }

                // At root obey the "searchmoves" option and skip moves not listed in Root
                // Move List, as a consequence any illegal move is also skipped. In MultiPV
                // mode we also skip PV moves which have been already searched.

                // If we find none, it means !count
                if (RootNode && (find(RootMoves, PVIdx, RootMoves.Count, move) == -1))
                {
                    continue;
                }

                if (SpNode)
                {
                    // Shared counter cannot be decremented later if move turns out to be illegal
                    if (!pos.pl_move_is_legal(move, ci.pinned))
                    {
                        continue;
                    }

                    moveCount = ++sp.moveCount;
                    ThreadHelper.lock_release(sp.Lock);
                }
                else
                {
                    moveCount++;
                }

                if (RootNode)
                {
                    SignalsFirstRootMove = (moveCount == 1);

                    if (thisThread == Threads.main_thread() && SearchTime.ElapsedMilliseconds > 3000)
                    {
                        Plug.Write("info depth ");
                        Plug.Write((depth / DepthC.ONE_PLY).ToString());
                        Plug.Write(" currmove ");
                        Plug.Write(Utils.move_to_uci(move, pos.chess960));
                        Plug.Write(" nodes ");
                        Plug.Write(pos.nodes.ToString());
                        Plug.Write(" currmovenumber ");
                        Plug.Write((moveCount + PVIdx).ToString());
                        Plug.Write(Constants.endl);
                    }
                }

                ext = DepthC.DEPTH_ZERO;
                captureOrPromotion = pos.is_capture_or_promotion(move);
                givesCheck = pos.move_gives_check(move, ci);
                dangerous = givesCheck 
                            || pos.is_passed_pawn_push(move)
                            || Utils.type_of_move(move) == MoveTypeC.CASTLING
                            || (captureOrPromotion // Entering a pawn endgame?
                                    && Utils.type_of(pos.piece_on(Utils.to_sq(move))) != PieceTypeC.PAWN
                                    && Utils.type_of_move(move) == MoveTypeC.NORMAL
                                    && (pos.non_pawn_material(ColorC.WHITE) + pos.non_pawn_material(ColorC.BLACK) 
                                        - Position.PieceValue[PhaseC.MG][pos.piece_on(Utils.to_sq(move))] == ValueC.VALUE_ZERO));

                // Step 12. Extend checks and, in PV nodes, also dangerous moves
                if (PvNode && dangerous)
                {
                    ext = DepthC.ONE_PLY;
                }
                // else if (threatExtension && refutes(pos, move, threatMove))
                // {
                // ext = DepthC.ONE_PLY;
                // }
                else if (givesCheck && pos.see(move, true) >= 0)
                {
                    ext = DepthC.ONE_PLY / 2;
                }

                // Singular extension search. If all moves but one fail low on a search of
                // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
                // is singular and should be extended. To verify this we do a reduced search
                // on all the other moves but the ttMove, if result is lower than ttValue minus
                // a margin then we extend ttreMove.
                if (singularExtensionNode && move == ttMove && (ext == 0) && pos.pl_move_is_legal(move, ci.pinned))
                {
                    Debug.Assert(ttValue != ValueC.VALUE_NONE);

                    var rBeta = ttValue - depth;
                    ss[ssPos].excludedMove = move;
                    ss[ssPos].skipNullMove = 1;
                    value = search(NodeTypeC.NonPV, pos, ss, ssPos, rBeta - 1, rBeta, depth / 2);
                    ss[ssPos].skipNullMove = 0;
                    ss[ssPos].excludedMove = MoveC.MOVE_NONE;
                    if (value < rBeta)
                    {
                        ext = DepthC.ONE_PLY;
                    }
                }

                // Update current move (this must be done after singular extension search)
                newDepth = depth - DepthC.ONE_PLY + ext;

                // Step 13. Futility pruning (is omitted in PV nodes)
                if (!PvNode
                    && !captureOrPromotion
                    && !inCheck 
                    && !dangerous 
                    && move != ttMove
                    && (bestValue > ValueC.VALUE_MATED_IN_MAX_PLY || (bestValue == -ValueC.VALUE_INFINITE && alpha > ValueC.VALUE_MATED_IN_MAX_PLY)))
                {
                    // Move count based pruning
                    if (depth < 16 * DepthC.ONE_PLY
                        && moveCount >= FutilityMoveCounts[depth]
                        && ((threatMove == 0) || !refutes(pos, move, threatMove)))
                    {
                        if (SpNode)
                        {
                            ThreadHelper.lock_grab(sp.Lock);
                        }

                        continue;
                    }

                    // Value based pruning
                    // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
                    // but fixing this made program slightly weaker.
                    var predictedDepth = newDepth - reduction(PvNode, depth, moveCount);
                    futilityValue = ss[ssPos].staticEval + ss[ssPos].evalMargin + futility_margin(predictedDepth, moveCount)
                                    + H.gain(pos.piece_moved(move), Utils.to_sq(move));

                    if (futilityValue < beta)
                    {
                        if (SpNode)
                        {
                            ThreadHelper.lock_grab(sp.Lock);
                        }

                        continue;
                    }

                    // Prune moves with negative SEE at low depths
                    if (predictedDepth < 2 * DepthC.ONE_PLY && pos.see(move, true) < 0)
                    {
                        if (SpNode)
                        {
                            ThreadHelper.lock_grab(sp.Lock);
                        }

                        continue;
                    }
                }

                // Check for legality only before to do the move
                if (!RootNode && !SpNode && !pos.pl_move_is_legal(move, ci.pinned))
                {
                    moveCount--;
                    continue;
                }

                pvMove = (PvNode && moveCount == 1);
                ss[ssPos].currentMove = move;
                if (!SpNode && !captureOrPromotion && playedMoveCount < 64)
                {
                    movesSearched[playedMoveCount++] = move;
                }

                // Step 14. Make the move
                if (st == null)
                {
                    st = StateInfoBroker.GetObject();
                }
                pos.do_move(move, st, ci, givesCheck);

                // Step 15. Reduced depth search (LMR). If the move fails high will be
                // re-searched at full depth.
                if (depth > 3 * DepthC.ONE_PLY
                    && !pvMove 
                    && !captureOrPromotion 
                    && !dangerous
                    && move != ttMove
                    && move != ss[ssPos].killers0
                    && move != ss[ssPos].killers1)
                {
                    ss[ssPos].reduction = reduction(PvNode, depth, moveCount);
                    var d = Math.Max(newDepth - ss[ssPos].reduction, DepthC.ONE_PLY);
                    alpha = SpNode ? sp.alpha : alpha;

                    value = -search(NodeTypeC.NonPV, pos, ss, ssPos + 1, -(alpha + 1), -alpha, d);

                    doFullDepthSearch = (value > alpha && ss[ssPos].reduction != DepthC.DEPTH_ZERO);
                    ss[ssPos].reduction = DepthC.DEPTH_ZERO;
                }
                else
                {
                    doFullDepthSearch = !pvMove;
                }

                // Step 16. Full depth search, when LMR is skipped or fails high
                if (doFullDepthSearch)
                {
                    alpha = SpNode ? sp.alpha : alpha;
                    value = newDepth < DepthC.ONE_PLY 
                            ? -qsearch(NodeTypeC.NonPV, givesCheck, pos, ss, ssPos + 1, -(alpha + 1), -alpha, DepthC.DEPTH_ZERO)
                            : -search(NodeTypeC.NonPV, pos, ss, ssPos + 1, -(alpha + 1), -alpha, newDepth);
                }

                // Only for PV nodes do a full PV search on the first move or after a fail
                // high, in the latter case search only if value < beta, otherwise let the
                // parentSplitPoint node to fail low with value <= alpha and to try another move.
                if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta))))
                {
                    value = newDepth < DepthC.ONE_PLY
                                ? -qsearch(NodeTypeC.PV, givesCheck, pos, ss, ssPos + 1, -beta, -alpha, DepthC.DEPTH_ZERO)
                                : -search(NodeTypeC.PV, pos, ss, ssPos + 1, -beta, -alpha, newDepth);
                }

                // Step 17. Undo move
                pos.undo_move(move);

                Debug.Assert(value > -ValueC.VALUE_INFINITE && value < ValueC.VALUE_INFINITE);

                // Step 18. Check for new best move
                if (SpNode)
                {
                    ThreadHelper.lock_grab(sp.Lock);
                    bestValue = sp.bestValue;
                    alpha = sp.alpha;
                }

                // Finished searching the move. If Signals.stop is true, the search
                // was aborted because the user interrupted the search or because we
                // ran out of time. In this case, the return value of the search cannot
                // be trusted, and we don't update the best move and/or PV.
                if (SignalsStop || thisThread.cutoff_occurred())
                {
                    if (st != null)
                    {
                        st.previous = null;
                        StateInfoBroker.Free();
                    }
                    CheckInfoBroker.Free();
                    MovePickerBroker.Free(mp);
                    MovesSearchedBroker.Free();

                    return value; // To avoid returning VALUE_INFINITE
                }

                // Finished searching the move. If Signals.stop is true, the search
                // was aborted because the user interrupted the search or because we
                // ran out of time. In this case, the return value of the search cannot
                // be trusted, and we don't update the best move and/or PV.
                if (RootNode)
                {
                    var rmPos = find(RootMoves, 0, RootMoves.Count, move);

                    // PV move or new best move ?
                    if (pvMove || value > alpha)
                    {
                        RootMoves[rmPos].score = value;
                        RootMoves[rmPos].extract_pv_from_tt(pos);

                        // We record how often the best move has been changed in each
                        // iteration. This information is used for time management: When
                        // the best move changes frequently, we allocate some more time.
                        if (!pvMove)
                        {
                            BestMoveChanges++;
                        }
                    }
                    else
                    {
                        // All other moves but the PV are set to the lowest value, this
                        // is not a problem when sorting becuase sort is stable and move
                        // position in the list is preserved, just the PV is pushed up.
                        RootMoves[rmPos].score = -ValueC.VALUE_INFINITE;
                    }
                }

                if (value > bestValue)
                {
                    bestValue = value;
                    if (SpNode) sp.bestValue = value;

                    if (value > alpha)
                    {
                        bestMove = move;
                        if (SpNode) sp.bestMove = move;

                        if (PvNode && value < beta)
                        {
                            alpha = value; // Update alpha here! Always alpha < beta
                            if (SpNode) sp.alpha = value;
                        }
                        else 
                        {
                            Debug.Assert(value >= beta); // Fail high

                            if (SpNode) sp.cutoff = true;
                            break;
                        }
                    }
                }

                // Step 19. Check for split
                if (!SpNode 
                    && depth >= Threads.minimumSplitDepth 
                    && Threads.available_slave(thisThread) != null
                    && thisThread.splitPointsSize < Constants.MAX_SPLITPOINTS_PER_THREAD)
                {
                    Debug.Assert(bestValue < beta);

                    Threads.split(
                        Constants.FakeSplit,
                        pos,
                        ss,
                        ssPos,
                        alpha,
                        beta,
                        ref bestValue,
                        ref bestMove,
                        depth,
                        threatMove,
                        moveCount,
                        mp,
                        NT);

                    if (bestValue >= beta)
                    {
                        break;
                    }
                }
            }

            // Step 20. Check for mate and stalemate
            // All legal moves have been searched and if there are no legal moves, it
            // must be mate or stalemate. Note that we can have a false positive in
            // case of Signals.stop or thread.cutoff_occurred() are set, but this is
            // harmless because return value is discarded anyhow in the parentSplitPoint nodes.
            // If we are in a singular extension search then return a fail low score.
            // A split node has at least one move, the one tried before to be splitted.
            if (!SpNode && moveCount == 0)
            {
                if (st != null)
                {
                    st.previous = null;
                    StateInfoBroker.Free();
                }
                CheckInfoBroker.Free();
                MovePickerBroker.Free(mp);
                MovesSearchedBroker.Free();
                return (excludedMove != 0) ? alpha : inCheck ? Utils.mated_in(ss[ssPos].ply) : DrawValue[pos.sideToMove];
            }

            // If we have pruned all the moves without searching return a fail-low score
            if (bestValue == -ValueC.VALUE_INFINITE)
            {
                Debug.Assert(playedMoveCount == 0);
                bestValue = alpha;
            }

            if (bestValue >= beta) // Failed high
            {
                TT.store(
                    posKey,
                    value_to_tt(bestValue, ss[ssPos].ply),
                    Bound.BOUND_LOWER,
                    depth,
                    bestMove,
                    ss[ssPos].staticEval,
                    ss[ssPos].evalMargin);

                if (!pos.is_capture_or_promotion(bestMove) && !inCheck)
                {
                    if (bestMove != ss[ssPos].killers0)
                    {
                        ss[ssPos].killers1 = ss[ssPos].killers0;
                        ss[ssPos].killers0 = bestMove;
                    }

                    // Increase history value of the cut-off move
                    var bonus = (depth * depth);
                    H.add(pos.piece_moved(bestMove), Utils.to_sq(bestMove), bonus);

                    // Decrease history of all the other played non-capture moves
                    for (var i = 0; i < playedMoveCount - 1; i++)
                    {
                        var m = movesSearched[i];
                        H.add(pos.piece_moved(m), Utils.to_sq(m), -bonus);
                    }
                }
            }
            else // Failed low or PV search
            {
                TT.store(posKey, value_to_tt(bestValue, ss[ssPos].ply), PvNode && bestMove != MoveC.MOVE_NONE ? Bound.BOUND_EXACT : Bound.BOUND_UPPER, depth, bestMove, ss[ssPos].staticEval, ss[ssPos].evalMargin);
            }

            Debug.Assert(bestValue > -ValueC.VALUE_INFINITE && bestValue < ValueC.VALUE_INFINITE);

            if (st != null)
            {
                st.previous = null;
                StateInfoBroker.Free();
            }
            CheckInfoBroker.Free();
            MovePickerBroker.Free(mp);
            MovesSearchedBroker.Free();

            return bestValue;
        }
Пример #14
0
        /// KR vs KB. This is very simple, and always returns drawish scores.  The
        /// score is slightly bigger when the defending king is close to the edge.
        internal static Value Endgame_KRKB(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.RookValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 0);
            Debug.Assert(pos.non_pawn_material(weakerSide) == Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.BISHOP) == 1);

            Value result = (MateTable[pos.king_square(weakerSide)]);
            return strongerSide == pos.sideToMove ? result : -result;
        }
Пример #15
0
        /// K, bishop and one or more pawns vs K. It checks for draws with rook pawns and
        /// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW
        /// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
        /// will be used.
        internal static ScaleFactor Endgame_KBPsK(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.BISHOP) == 1);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) >= 1);

            // No Debug.Assertions about the material of weakerSide, because we want draws to
            // be detected even when the weaker side has some pawns.

            Bitboard pawns = pos.pieces_PTC(PieceTypeC.PAWN, strongerSide);
            File pawnFile = Utils.file_of(pos.pieceList[strongerSide][PieceTypeC.PAWN][0]);

            // All pawns are on a single rook file ?
            if ((pawnFile == FileC.FILE_A || pawnFile == FileC.FILE_H)
                && (((pawns & ~Utils.file_bb_F(pawnFile))) == 0))
            {
                Square bishopSq = pos.pieceList[strongerSide][PieceTypeC.BISHOP][0];
                Square queeningSq = Utils.relative_square(strongerSide, Utils.make_square(pawnFile, RankC.RANK_8));
                Square kingSq = pos.king_square(weakerSide);

                if (Utils.opposite_colors(queeningSq, bishopSq)
                    && Math.Abs(Utils.file_of(kingSq) - pawnFile) <= 1)
                {
                    // The bishop has the wrong color, and the defending king is on the
                    // file of the pawn(s) or the adjacent file. Find the rank of the
                    // frontmost pawn.
                    Rank rank;
                    if (strongerSide == ColorC.WHITE)
                    {
                        for (rank = RankC.RANK_7; (((Utils.rank_bb_R(rank) & pawns)) == 0); rank--) { }
                        Debug.Assert(rank >= RankC.RANK_2 && rank <= RankC.RANK_7);
                    }
                    else
                    {
                        for (rank = RankC.RANK_2; (((Utils.rank_bb_R(rank) & pawns)) == 0); rank++) { }
                        rank = (rank ^ 7);  // HACK to get the relative rank
                        Debug.Assert(rank >= RankC.RANK_2 && rank <= RankC.RANK_7);
                    }
                    // If the defending king has distance 1 to the promotion square or
                    // is placed somewhere in front of the pawn, it's a draw.
                    if (Utils.square_distance(kingSq, queeningSq) <= 1
                        || Utils.relative_rank_CS(strongerSide, kingSq) >= rank)
                        return ScaleFactorC.SCALE_FACTOR_DRAW;
                }
            }
            return ScaleFactorC.SCALE_FACTOR_NONE;
        }
Пример #16
0
        /// KR vs KN.  The attacking side has slightly better winning chances than
        /// in KR vs KB, particularly if the king and the knight are far apart.
        internal static Value Endgame_KRKN(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.RookValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 0);
            Debug.Assert(pos.non_pawn_material(weakerSide) == Constants.KnightValueMidgame);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.KNIGHT) == 1);

            Square bksq = pos.king_square(weakerSide);
            Square bnsq = pos.pieceList[weakerSide][PieceTypeC.KNIGHT][0];
            Value result = (MateTable[bksq] + penalty[Utils.square_distance(bksq, bnsq)]);
            return strongerSide == pos.sideToMove ? result : -result;
        }
Пример #17
0
        /// K, knight and a pawn vs K. There is a single rule: If the pawn is a rook pawn
        /// on the 7th rank and the defending king prevents the pawn from advancing, the
        /// position is drawn.
        internal static ScaleFactor Endgame_KNPK(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.KnightValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.KNIGHT) == 1);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 1);
            Debug.Assert(pos.non_pawn_material(weakerSide) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);

            Square pawnSq = pos.pieceList[strongerSide][PieceTypeC.PAWN][0];
            Square weakerKingSq = pos.king_square(weakerSide);

            if (pawnSq == Utils.relative_square(strongerSide, SquareC.SQ_A7)
                && Utils.square_distance(weakerKingSq, Utils.relative_square(strongerSide, SquareC.SQ_A8)) <= 1)
                return ScaleFactorC.SCALE_FACTOR_DRAW;

            if (pawnSq == Utils.relative_square(strongerSide, SquareC.SQ_H7)
                && Utils.square_distance(weakerKingSq, Utils.relative_square(strongerSide, SquareC.SQ_H8)) <= 1)
                return ScaleFactorC.SCALE_FACTOR_DRAW;

            return ScaleFactorC.SCALE_FACTOR_NONE;
        }
Пример #18
0
        /// K, rook and one pawn vs K and a rook. This function knows a handful of the
        /// most important classes of drawn positions, but is far from perfect. It would
        /// probably be a good idea to add more knowledge in the future.
        ///
        /// It would also be nice to rewrite the actual code for this function,
        /// which is mostly copied from Glaurung 1.x, and not very pretty.
        internal static ScaleFactor Endgame_KRPKR(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.RookValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 1);
            Debug.Assert(pos.non_pawn_material(weakerSide) == Constants.RookValueMidgame);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);

            Square wksq = pos.king_square(strongerSide);
            Square wrsq = pos.pieceList[strongerSide][PieceTypeC.ROOK][0];
            Square wpsq = pos.pieceList[strongerSide][PieceTypeC.PAWN][0];
            Square bksq = pos.king_square(weakerSide);
            Square brsq = pos.pieceList[weakerSide][PieceTypeC.ROOK][0];

            // Orient the board in such a way that the stronger side is white, and the
            // pawn is on the left half of the board.
            if (strongerSide == ColorC.BLACK)
            {
                wksq = Utils.flip_S(wksq);
                wrsq = Utils.flip_S(wrsq);
                wpsq = Utils.flip_S(wpsq);
                bksq = Utils.flip_S(bksq);
                brsq = Utils.flip_S(brsq);
            }
            if (Utils.file_of(wpsq) > FileC.FILE_D)
            {
                wksq = Utils.mirror(wksq);
                wrsq = Utils.mirror(wrsq);
                wpsq = Utils.mirror(wpsq);
                bksq = Utils.mirror(bksq);
                brsq = Utils.mirror(brsq);
            }

            File f = Utils.file_of(wpsq);
            Rank r = Utils.rank_of(wpsq);
            Square queeningSq = Utils.make_square(f, RankC.RANK_8);
            int tempo = (pos.sideToMove == strongerSide ? 1 : 0);

            // If the pawn is not too far advanced and the defending king defends the
            // queening square, use the third-rank defence.
            if (r <= RankC.RANK_5
                && Utils.square_distance(bksq, queeningSq) <= 1
                && wksq <= SquareC.SQ_H5
                && (Utils.rank_of(brsq) == RankC.RANK_6 || (r <= RankC.RANK_3 && Utils.rank_of(wrsq) != RankC.RANK_6)))
                return ScaleFactorC.SCALE_FACTOR_DRAW;

            // The defending side saves a draw by checking from behind in case the pawn
            // has advanced to the 6th rank with the king behind.
            if (r == RankC.RANK_6
                && Utils.square_distance(bksq, queeningSq) <= 1
                && Utils.rank_of(wksq) + tempo <= RankC.RANK_6
                && (Utils.rank_of(brsq) == RankC.RANK_1 || ((tempo == 0) && Math.Abs(Utils.file_of(brsq) - f) >= 3)))
                return ScaleFactorC.SCALE_FACTOR_DRAW;

            if (r >= RankC.RANK_6
                && bksq == queeningSq
                && Utils.rank_of(brsq) == RankC.RANK_1
                && ((tempo == 0) || Utils.square_distance(wksq, wpsq) >= 2))
                return ScaleFactorC.SCALE_FACTOR_DRAW;

            // White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7
            // and the black rook is behind the pawn.
            if (wpsq == SquareC.SQ_A7
                && wrsq == SquareC.SQ_A8
                && (bksq == SquareC.SQ_H7 || bksq == SquareC.SQ_G7)
                && Utils.file_of(brsq) == FileC.FILE_A
                && (Utils.rank_of(brsq) <= RankC.RANK_3 || Utils.file_of(wksq) >= FileC.FILE_D || Utils.rank_of(wksq) <= RankC.RANK_5))
                return ScaleFactorC.SCALE_FACTOR_DRAW;

            // If the defending king blocks the pawn and the attacking king is too far
            // away, it's a draw.
            if (r <= RankC.RANK_5
                && bksq == wpsq + SquareC.DELTA_N
                && Utils.square_distance(wksq, wpsq) - tempo >= 2
                && Utils.square_distance(wksq, brsq) - tempo >= 2)
                return ScaleFactorC.SCALE_FACTOR_DRAW;

            // Pawn on the 7th rank supported by the rook from behind usually wins if the
            // attacking king is closer to the queening square than the defending king,
            // and the defending king cannot gain tempi by threatening the attacking rook.
            if (r == RankC.RANK_7
                && f != FileC.FILE_A
                && Utils.file_of(wrsq) == f
                && wrsq != queeningSq
                && (Utils.square_distance(wksq, queeningSq) < Utils.square_distance(bksq, queeningSq) - 2 + tempo)
                && (Utils.square_distance(wksq, queeningSq) < Utils.square_distance(bksq, wrsq) + tempo))
                return (ScaleFactorC.SCALE_FACTOR_MAX - 2 * Utils.square_distance(wksq, queeningSq));

            // Similar to the above, but with the pawn further back
            if (f != FileC.FILE_A
                && Utils.file_of(wrsq) == f
                && wrsq < wpsq
                && (Utils.square_distance(wksq, queeningSq) < Utils.square_distance(bksq, queeningSq) - 2 + tempo)
                && (Utils.square_distance(wksq, wpsq + SquareC.DELTA_N) < Utils.square_distance(bksq, wpsq + SquareC.DELTA_N) - 2 + tempo)
                && (Utils.square_distance(bksq, wrsq) + tempo >= 3
                    || (Utils.square_distance(wksq, queeningSq) < Utils.square_distance(bksq, wrsq) + tempo
                        && (Utils.square_distance(wksq, wpsq + SquareC.DELTA_N) < Utils.square_distance(bksq, wrsq) + tempo))))
                return (ScaleFactorC.SCALE_FACTOR_MAX
                                   - 8 * Utils.square_distance(wpsq, queeningSq)
                                   - 2 * Utils.square_distance(wksq, queeningSq));

            // If the pawn is not far advanced, and the defending king is somewhere in
            // the pawn's path, it's probably a draw.
            if (r <= RankC.RANK_4 && bksq > wpsq)
            {
                if (Utils.file_of(bksq) == Utils.file_of(wpsq))
                    return (10);
                if (Math.Abs(Utils.file_of(bksq) - Utils.file_of(wpsq)) == 1
                    && Utils.square_distance(wksq, bksq) > 2)
                    return (24 - 2 * Utils.square_distance(wksq, bksq));
            }
            return ScaleFactorC.SCALE_FACTOR_NONE;
        }
Пример #19
0
        /// KP vs K. This endgame is evaluated with the help of a bitbase.
        internal static Value Endgame_KPK(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.non_pawn_material(weakerSide) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 1);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);

            Square wksq, bksq, wpsq;
            Color stm;

            if (strongerSide == ColorC.WHITE)
            {
                wksq = pos.king_square(ColorC.WHITE);
                bksq = pos.king_square(ColorC.BLACK);
                wpsq = pos.pieceList[ColorC.WHITE][PieceTypeC.PAWN][0];
                stm = pos.sideToMove;
            }
            else
            {
                wksq = Utils.flip_S(pos.king_square(ColorC.BLACK));
                bksq = Utils.flip_S(pos.king_square(ColorC.WHITE));
                wpsq = Utils.flip_S(pos.pieceList[ColorC.BLACK][PieceTypeC.PAWN][0]);
                stm = Utils.flip_C(pos.sideToMove);
            }

            if (Utils.file_of(wpsq) >= FileC.FILE_E)
            {
                wksq = Utils.mirror(wksq);
                bksq = Utils.mirror(bksq);
                wpsq = Utils.mirror(wpsq);
            }

            if (KPKPosition.probe_kpk_bitbase(wksq, wpsq, bksq, stm) == 0)
                return ValueC.VALUE_DRAW;

            Value result = ValueC.VALUE_KNOWN_WIN
                          + Constants.PawnValueEndgame
                          + Utils.rank_of(wpsq);

            return strongerSide == pos.sideToMove ? result : -result;
        }
Пример #20
0
        /// Mate with KX vs K. This function is used to evaluate positions with
        /// King and plenty of material vs a lone king. It simply gives the
        /// attacking side a bonus for driving the defending king towards the edge
        /// of the board, and for keeping the distance between the two kings small.
        /// KXK
        internal static Value Endgame_KXK(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(weakerSide) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == ValueC.VALUE_ZERO);

            // Stalemate detection with lone king
            MList mlist = MListBroker.GetObject(); mlist.pos = 0;
            Movegen.generate_legal(pos, mlist.moves, ref mlist.pos);
            bool any = mlist.pos > 0;
            MListBroker.Free();

            if (pos.sideToMove == weakerSide
                && !pos.in_check()
                && !any)
            {
                return ValueC.VALUE_DRAW;
            }

            Square winnerKSq = pos.king_square(strongerSide);
            Square loserKSq = pos.king_square(weakerSide);

            Value result = pos.non_pawn_material(strongerSide)
                           + pos.piece_count(strongerSide, PieceTypeC.PAWN) * Constants.PawnValueEndgame
                           + MateTable[loserKSq]
                           + DistanceBonus[Utils.square_distance(winnerKSq, loserKSq)];

            if (pos.piece_count(strongerSide, PieceTypeC.QUEEN)!=0
            || pos.piece_count(strongerSide, PieceTypeC.ROOK)!=0
            || pos.bishop_pair(strongerSide))
            {

                result += ValueC.VALUE_KNOWN_WIN;
            }

            return strongerSide == pos.sideToMove ? result : -result;
        }
Пример #21
0
        /// K and a pawn vs K and a pawn. This is done by removing the weakest side's
        /// pawn and probing the KP vs K bitbase: If the weakest side has a draw without
        /// the pawn, she probably has at least a draw with the pawn as well. The exception
        /// is when the stronger side's pawn is far advanced and not on a rook file; in
        /// this case it is often possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
        internal static ScaleFactor Endgame_KPKP(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.non_pawn_material(weakerSide) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.piece_count(ColorC.WHITE, PieceTypeC.PAWN) == 1);
            Debug.Assert(pos.piece_count(ColorC.BLACK, PieceTypeC.PAWN) == 1);

            Square wksq = pos.king_square(strongerSide);
            Square bksq = pos.king_square(weakerSide);
            Square wpsq = pos.pieceList[strongerSide][PieceTypeC.PAWN][0];
            Color stm = pos.sideToMove;

            if (strongerSide == ColorC.BLACK)
            {
                wksq = Utils.flip_S(wksq);
                bksq = Utils.flip_S(bksq);
                wpsq = Utils.flip_S(wpsq);
                stm = Utils.flip_C(stm);
            }

            if (Utils.file_of(wpsq) >= FileC.FILE_E)
            {
                wksq = Utils.mirror(wksq);
                bksq = Utils.mirror(bksq);
                wpsq = Utils.mirror(wpsq);
            }

            // If the pawn has advanced to the fifth rank or further, and is not a
            // rook pawn, it's too dangerous to assume that it's at least a draw.
            if (Utils.rank_of(wpsq) >= RankC.RANK_5
                && Utils.file_of(wpsq) != FileC.FILE_A)
                return ScaleFactorC.SCALE_FACTOR_NONE;

            // Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw,
            // it's probably at least a draw even with the pawn.
            return (KPKPosition.probe_kpk_bitbase(wksq, wpsq, bksq, stm) != 0) ? ScaleFactorC.SCALE_FACTOR_NONE : ScaleFactorC.SCALE_FACTOR_DRAW;
        }
Пример #22
0
        // search<>() is the main search function for both PV and non-PV nodes and for
        // normal and SplitPoint nodes. When called just after a split point the search
        // is simpler because we have already probed the hash table, done a null move
        // search, and searched the first move before splitting, we don't have to repeat
        // all this work again. We also don't need to store anything to the hash table
        // here: This is taken care of after we return from the split point.
        internal static Value search(NodeType NT, Position pos, Stack[] ss, int ssPos, Value alpha, Value beta, Depth depth)
        {
            bool PvNode = (NT == NodeTypeC.PV || NT == NodeTypeC.Root || NT == NodeTypeC.SplitPointPV || NT == NodeTypeC.SplitPointRoot);
            bool SpNode = (NT == NodeTypeC.SplitPointPV || NT == NodeTypeC.SplitPointNonPV || NT == NodeTypeC.SplitPointRoot);
            bool RootNode = (NT == NodeTypeC.Root || NT == NodeTypeC.SplitPointRoot);

            Debug.Assert(alpha >= -ValueC.VALUE_INFINITE && alpha < beta && beta <= ValueC.VALUE_INFINITE);
            Debug.Assert((alpha == beta - 1) || PvNode);
            Debug.Assert(depth > DepthC.DEPTH_ZERO);

            MovesSearched ms = MovesSearchedBroker.GetObject();
            Move[] movesSearched = ms.movesSearched;

            StateInfo st = null;
            TTEntry tte = TT.StaticEntry;
            bool tteHasValue = false;
            UInt32 ttePos = 0;
            Key posKey = 0;
            Move ttMove, move, excludedMove, bestMove, threatMove;
            Depth ext, newDepth;
            Bound bt;
            Value bestValue, value, oldAlpha, ttValue;
            Value refinedValue, nullValue, futilityBase, futilityValue;
            bool isPvMove, inCheck, singularExtensionNode, givesCheck;
            bool captureOrPromotion, dangerous, doFullDepthSearch;
            int moveCount = 0, playedMoveCount = 0;
            Thread thisThread = pos.this_thread();
            SplitPoint sp = null;

            refinedValue = bestValue = value = -ValueC.VALUE_INFINITE;
            oldAlpha = alpha;
            inCheck = pos.in_check();
            ss[ssPos].ply = ss[ssPos - 1].ply + 1;

            // Used to send selDepth info to GUI
            if (PvNode && thisThread.maxPly < ss[ssPos].ply)
                thisThread.maxPly = ss[ssPos].ply;

            // Step 1. Initialize node
            if (SpNode)
            {
                ttMove = excludedMove = MoveC.MOVE_NONE;
                ttValue = ValueC.VALUE_ZERO;

                sp = ss[ssPos].sp;
                bestMove = sp.bestMove;
                threatMove = sp.threatMove;
                bestValue = sp.bestValue;
                moveCount = sp.moveCount; // Lock must be held here

                Debug.Assert(bestValue > -ValueC.VALUE_INFINITE && moveCount > 0);

                goto split_point_start;
            }
            else
            {
                ss[ssPos].currentMove = threatMove = ss[ssPos + 1].excludedMove = bestMove = MoveC.MOVE_NONE;
                ss[ssPos + 1].skipNullMove = 0; ss[ssPos + 1].reduction = DepthC.DEPTH_ZERO;
                ss[ssPos + 2].killers0 = ss[ssPos + 2].killers1 = MoveC.MOVE_NONE;
            }

            // Step 2. Check for aborted search and immediate draw
            // Enforce node limit here. FIXME: This only works with 1 search thread.
            if ((Limits.nodes != 0) && pos.nodes >= Limits.nodes)
                SignalsStop = true;

            if ((SignalsStop
                 || pos.is_draw(false)
                 || ss[ssPos].ply > Constants.MAX_PLY) && !RootNode)
            {
                MovesSearchedBroker.Free();
                return ValueC.VALUE_DRAW;
            }

            // Step 3. Mate distance pruning. Even if we mate at the next move our score
            // would be at best mate_in(ss[ssPos].ply+1), but if alpha is already bigger because
            // a shorter mate was found upward in the tree then there is no need to search
            // further, we will never beat current alpha. Same logic but with reversed signs
            // applies also in the opposite condition of being mated instead of giving mate,
            // in this case return a fail-high score.
            if (!RootNode)
            {
                alpha = Math.Max(Utils.mated_in(ss[ssPos].ply), alpha);
                beta = Math.Min(Utils.mate_in(ss[ssPos].ply + 1), beta);
                if (alpha >= beta)
                {
                    MovesSearchedBroker.Free();
                    return alpha;
                }
            }

            // Step 4. Transposition table lookup
            // We don't want the score of a partial search to overwrite a previous full search
            // TT value, so we use a different position key in case of an excluded move.
            excludedMove = ss[ssPos].excludedMove;
            posKey = (excludedMove != 0) ? pos.exclusion_key() : pos.key();
            tteHasValue = TT.probe(posKey, ref ttePos, out tte);
            ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tteHasValue ? tte.move() : MoveC.MOVE_NONE;
            ttValue = tteHasValue ? value_from_tt(tte.value(), ss[ssPos].ply) : ValueC.VALUE_ZERO;

            // At PV nodes we check for exact scores, while at non-PV nodes we check for
            // a fail high/low. Biggest advantage at probing at PV nodes is to have a
            // smooth experience in analysis mode. We don't probe at Root nodes otherwise
            // we should also update RootMoveList to avoid bogus output.
            if (!RootNode && tteHasValue && (PvNode ? tte.depth() >= depth && tte.type() == Bound.BOUND_EXACT
                                            : can_return_tt(tte, depth, ttValue, beta)))
            {
                TT.entries[ttePos].set_generation(TT.generation);
                ss[ssPos].currentMove = ttMove; // Can be MOVE_NONE

                if (ttValue >= beta
                    && (ttMove != 0)
                    && !pos.is_capture_or_promotion(ttMove)
                    && ttMove != ss[ssPos].killers0)
                {
                    ss[ssPos].killers1 = ss[ssPos].killers0;
                    ss[ssPos].killers0 = ttMove;
                }

                MovesSearchedBroker.Free();
                return ttValue;
            }

            // Step 5. Evaluate the position statically and update parent's gain statistics
            if (inCheck)
                ss[ssPos].eval = ss[ssPos].evalMargin = ValueC.VALUE_NONE;
            else if (tteHasValue)
            {
                Debug.Assert(tte.static_value() != ValueC.VALUE_NONE);
                ss[ssPos].eval = tte.static_value();
                ss[ssPos].evalMargin = tte.static_value_margin();
                refinedValue = refine_eval(tte, ttValue, ss[ssPos].eval);
            }
            else
            {
                refinedValue = ss[ssPos].eval = Evaluate.do_evaluate(false, pos, ref ss[ssPos].evalMargin);
                TT.store(posKey, ValueC.VALUE_NONE, Bound.BOUND_NONE, DepthC.DEPTH_NONE, MoveC.MOVE_NONE, ss[ssPos].eval, ss[ssPos].evalMargin);
            }

            // Update gain for the parent non-capture move given the static position
            // evaluation before and after the move.
            if ((move = ss[ssPos - 1].currentMove) != MoveC.MOVE_NULL
                && ss[ssPos - 1].eval != ValueC.VALUE_NONE
                && ss[ssPos].eval != ValueC.VALUE_NONE
                && (pos.captured_piece_type() == 0)
                && !Utils.is_special(move))
            {
                Square to = Utils.to_sq(move);
                H.update_gain(pos.piece_on(to), to, -ss[ssPos - 1].eval - ss[ssPos].eval);
            }

            // Step 6. Razoring (is omitted in PV nodes)
            if (!PvNode && !inCheck
                && depth < RazorDepth
                && refinedValue + razor_margin(depth) < beta
                && ttMove == MoveC.MOVE_NONE
                && Math.Abs(beta) < ValueC.VALUE_MATE_IN_MAX_PLY
                && !pos.pawn_on_7th(pos.sideToMove))
            {
                Value rbeta = beta - razor_margin(depth);
                Value v = qsearch(NodeTypeC.NonPV, pos, ss, ssPos, rbeta - 1, rbeta, DepthC.DEPTH_ZERO);
                if (v < rbeta)
                {
                    // Logically we should return (v + razor_margin(depth)), but
                    // surprisingly this did slightly weaker in tests.
                    MovesSearchedBroker.Free();
                    return v;
                }
            }

            // Step 7. Static null move pruning (is omitted in PV nodes)
            // We're betting that the opponent doesn't have a move that will reduce
            // the score by more than futility_margin(depth) if we do a null move.
            if (!PvNode && !inCheck
                && (ss[ssPos].skipNullMove == 0)
                && depth < RazorDepth
                && Math.Abs(beta) < ValueC.VALUE_MATE_IN_MAX_PLY
                && refinedValue - futility_margin(depth, 0) >= beta
                && (pos.non_pawn_material(pos.sideToMove) != 0))
            {
                MovesSearchedBroker.Free();
                return refinedValue - futility_margin(depth, 0);
            }

            // Step 8. Null move search with verification search (is omitted in PV nodes)
            if (!PvNode && !inCheck
                && (ss[ssPos].skipNullMove == 0)
                && depth > DepthC.ONE_PLY
                && refinedValue >= beta
                && Math.Abs(beta) < ValueC.VALUE_MATE_IN_MAX_PLY
                && (pos.non_pawn_material(pos.sideToMove) != 0))
            {
                ss[ssPos].currentMove = MoveC.MOVE_NULL;

                // Null move dynamic reduction based on depth
                int R = 3 + (depth >= 5 * DepthC.ONE_PLY ? depth / 8 : 0);

                // Null move dynamic reduction based on value
                if (refinedValue - Constants.PawnValueMidgame > beta)
                    R++;

                if (st == null) { st = StateInfoBroker.GetObject(); }
                pos.do_null_move(true, st);
                ss[ssPos + 1].skipNullMove = 1;
                nullValue = depth - R * DepthC.ONE_PLY < DepthC.ONE_PLY ? -qsearch(NodeTypeC.NonPV, pos, ss, ssPos + 1, -beta, -alpha, DepthC.DEPTH_ZERO)
                                                      : -search(NodeTypeC.NonPV, pos, ss, ssPos + 1, -beta, -alpha, depth - R * DepthC.ONE_PLY);
                ss[ssPos + 1].skipNullMove = 0;
                pos.do_null_move(false, st);

                if (nullValue >= beta)
                {
                    // Do not return unproven mate scores
                    if (nullValue >= ValueC.VALUE_MATE_IN_MAX_PLY)
                        nullValue = beta;

                    if (depth < 6 * DepthC.ONE_PLY)
                    {
                        if (st != null) { st.previous = null; StateInfoBroker.Free(); }
                        MovesSearchedBroker.Free();
                        return nullValue;
                    }

                    // Do verification search at high depths
                    ss[ssPos].skipNullMove = 1;
                    Value v = search(NodeTypeC.NonPV, pos, ss, ssPos, alpha, beta, depth - R * DepthC.ONE_PLY);
                    ss[ssPos].skipNullMove = 0;

                    if (v >= beta)
                    {
                        if (st != null) { st.previous = null; StateInfoBroker.Free(); }
                        MovesSearchedBroker.Free();
                        return nullValue;
                    }
                }
                else
                {
                    // The null move failed low, which means that we may be faced with
                    // some kind of threat. If the previous move was reduced, check if
                    // the move that refuted the null move was somehow connected to the
                    // move which was reduced. If a connection is found, return a fail
                    // low score (which will cause the reduced move to fail high in the
                    // parent node, which will trigger a re-search with full depth).
                    threatMove = ss[ssPos + 1].currentMove;

                    if (depth < ThreatDepth
                        && (ss[ssPos - 1].reduction != 0)
                        && threatMove != MoveC.MOVE_NONE
                        && connected_moves(pos, ss[ssPos - 1].currentMove, threatMove))
                    {
                        if (st != null) { st.previous = null; StateInfoBroker.Free(); }
                        MovesSearchedBroker.Free();
                        return beta - 1;
                    }
                }
            }

            // Step 9. ProbCut (is omitted in PV nodes)
            // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
            // and a reduced search returns a value much above beta, we can (almost) safely
            // prune the previous move.
            if (!PvNode && !inCheck
                && excludedMove == MoveC.MOVE_NONE
                && depth >= RazorDepth + DepthC.ONE_PLY
                && (ss[ssPos].skipNullMove == 0)
                && Math.Abs(beta) < ValueC.VALUE_MATE_IN_MAX_PLY)
            {
                Value rbeta = beta + 200;
                Depth rdepth = depth - DepthC.ONE_PLY - 3 * DepthC.ONE_PLY;

                Debug.Assert(rdepth >= DepthC.ONE_PLY);
                Debug.Assert(ss[ssPos - 1].currentMove != MoveC.MOVE_NONE);
                Debug.Assert(ss[ssPos - 1].currentMove != MoveC.MOVE_NULL);

                MovePicker mp2 = MovePickerBroker.GetObject();
                mp2.MovePickerC(pos, ttMove, H, pos.captured_piece_type());
                CheckInfo ci2 = CheckInfoBroker.GetObject();
                ci2.CreateCheckInfo(pos);

                while ((move = mp2.next_move()) != MoveC.MOVE_NONE)
                {
                    if (pos.pl_move_is_legal(move, ci2.pinned))
                    {
                        ss[ssPos].currentMove = move;
                        if (st == null) { st = StateInfoBroker.GetObject(); }
                        pos.do_move(move, st, ci2, pos.move_gives_check(move, ci2));
                        value = -search(NodeTypeC.NonPV, pos, ss, ssPos + 1, -rbeta, -rbeta + 1, rdepth);
                        pos.undo_move(move);
                        if (value >= rbeta)
                        {
                            if (st != null) { st.previous = null; StateInfoBroker.Free(); }
                            CheckInfoBroker.Free();
                            MovePickerBroker.Free(mp2);
                            MovesSearchedBroker.Free();
                            return value;
                        }
                    }
                }

                CheckInfoBroker.Free();
                MovePickerBroker.Free(mp2);
            }

            // Step 10. Internal iterative deepening
            if (ttMove == MoveC.MOVE_NONE
                && depth >= IIDDepth[PvNode ? 1 : 0]
                && (PvNode || (!inCheck && ss[ssPos].eval + IIDMargin >= beta)))
            {
                Depth d = (PvNode ? depth - 2 * DepthC.ONE_PLY : depth / 2);

                ss[ssPos].skipNullMove = 1;
                search(PvNode ? NodeTypeC.PV : NodeTypeC.NonPV, pos, ss, ssPos, alpha, beta, d);
                ss[ssPos].skipNullMove = 0;

                tteHasValue = TT.probe(posKey, ref ttePos, out tte);
                ttMove = (tteHasValue) ? tte.move() : MoveC.MOVE_NONE;
            }
            else
            {
                // Re-read (needed as TTEntry is a struct in the port)
                if ((tteHasValue) && (TT.entries[ttePos].key == tte.key)) { tte = TT.entries[ttePos]; }
            }

        split_point_start: // At split points actual search starts from here

            MovePicker mp = MovePickerBroker.GetObject();
            mp.MovePickerC(pos, ttMove, depth, H, ss[ssPos], PvNode ? -ValueC.VALUE_INFINITE : beta, SpNode ? ss[ssPos].sp.mp : null);
            CheckInfo ci = CheckInfoBroker.GetObject();
            ci.CreateCheckInfo(pos);
            futilityBase = ss[ssPos].eval + ss[ssPos].evalMargin;
            singularExtensionNode = !RootNode
                                   && !SpNode
                                   && depth >= SingularExtensionDepth[PvNode ? 1 : 0]
                                   && ttMove != MoveC.MOVE_NONE
                                   && (excludedMove == 0) // Recursive singular search is not allowed
                                   && ((tte.type() & Bound.BOUND_LOWER) != 0) // FIXME: uninitialized!
                                   && tte.depth() >= depth - 3 * DepthC.ONE_PLY;

            // Step 11. Loop through moves
            // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
            while (bestValue < beta
                   && (move = mp.next_move()) != MoveC.MOVE_NONE
                    && !thisThread.cutoff_occurred()
                    && !SignalsStop)
            {
                Debug.Assert(Utils.is_ok_M(move));

                if (move == excludedMove)
                    continue;

                // At root obey the "searchmoves" option and skip moves not listed in Root
                // Move List, as a consequence any illegal move is also skipped. In MultiPV
                // mode we also skip PV moves which have been already searched.

                // If we find none, it means !count
                if (RootNode && (find(RootMoves, PVIdx, RootMoves.Count, move) == -1))
                    continue;

                // At PV and SpNode nodes we want all moves to be legal since the beginning
                if ((PvNode || SpNode) && !pos.pl_move_is_legal(move, ci.pinned))
                    continue;

                if (SpNode)
                {
                    moveCount = ++sp.moveCount;
                    ThreadHelper.lock_release(sp.Lock);
                }
                else
                    moveCount++;

                if (RootNode)
                {
                    SignalsFirstRootMove = (moveCount == 1);

                    if (thisThread == Threads.main_thread() && SearchTime.ElapsedMilliseconds > 2000)
                    {
                        Plug.Write("info depth ");
                        Plug.Write((depth / DepthC.ONE_PLY).ToString());
                        Plug.Write(" currmove ");
                        Plug.Write(Utils.move_to_uci(move, Chess960));
                        Plug.Write(" nodes ");
                        Plug.Write(pos.nodes.ToString());
                        Plug.Write(" currmovenumber ");
                        Plug.Write((moveCount + PVIdx).ToString());
                        Plug.Write(Constants.endl);
                    }
                }

                isPvMove = (PvNode && moveCount <= 1);
                captureOrPromotion = pos.is_capture_or_promotion(move);
                givesCheck = pos.move_gives_check(move, ci);
                dangerous = givesCheck || is_dangerous(pos, move, captureOrPromotion);
                ext = DepthC.DEPTH_ZERO;

                // Step 12. Extend checks and, in PV nodes, also dangerous moves
                if (PvNode && dangerous)
                    ext = DepthC.ONE_PLY;

                else if (givesCheck && pos.see(move, true) >= 0)
                    ext = DepthC.ONE_PLY / 2;

                // Singular extension search. If all moves but one fail low on a search of
                // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
                // is singular and should be extended. To verify this we do a reduced search
                // on all the other moves but the ttMove, if result is lower than ttValue minus
                // a margin then we extend ttMove.
                if (singularExtensionNode
                    && (ext == 0)
                    && move == ttMove
                    && pos.pl_move_is_legal(move, ci.pinned))
                {
                    if (Math.Abs(ttValue) < ValueC.VALUE_KNOWN_WIN)
                    {
                        Value rBeta = ttValue - (int)(depth);
                        ss[ssPos].excludedMove = move;
                        ss[ssPos].skipNullMove = 1;
                        value = search(NodeTypeC.NonPV, pos, ss, ssPos, rBeta - 1, rBeta, depth / 2);
                        ss[ssPos].skipNullMove = 0;
                        ss[ssPos].excludedMove = MoveC.MOVE_NONE;
                        if (value < rBeta)
                            ext = DepthC.ONE_PLY;
                    }
                }

                // Update current move (this must be done after singular extension search)
                newDepth = depth - DepthC.ONE_PLY + ext;

                // Step 13. Futility pruning (is omitted in PV nodes)
                if (!PvNode && !inCheck
                    && !captureOrPromotion
                    && !dangerous
                    && move != ttMove
                    && (bestValue > ValueC.VALUE_MATED_IN_MAX_PLY || bestValue == -ValueC.VALUE_INFINITE)
                    && !Utils.is_castle(move))
                {
                    // Move count based pruning
                    if (moveCount >= futility_move_count(depth)
                        && ((threatMove == 0) || !connected_threat(pos, move, threatMove)))
                    {
                        if (SpNode)
                            ThreadHelper.lock_grab(sp.Lock);

                        continue;
                    }

                    // Value based pruning
                    // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
                    // but fixing this made program slightly weaker.
                    Depth predictedDepth = newDepth - reduction(PvNode, depth, moveCount);
                    futilityValue = futilityBase + futility_margin(predictedDepth, moveCount)
                                                 + H.gain(pos.piece_moved(move), Utils.to_sq(move));

                    if (futilityValue < beta)
                    {
                        if (SpNode)
                            ThreadHelper.lock_grab(sp.Lock);

                        continue;
                    }

                    // Prune moves with negative SEE at low depths
                    if (predictedDepth < 2 * DepthC.ONE_PLY
                        && pos.see(move, true) < 0)
                    {
                        if (SpNode)
                            ThreadHelper.lock_grab(sp.Lock);

                        continue;
                    }
                }

                // Check for legality only before to do the move
                if (!pos.pl_move_is_legal(move, ci.pinned))
                {
                    moveCount--;
                    continue;
                }

                ss[ssPos].currentMove = move;
                if (!SpNode && !captureOrPromotion && playedMoveCount < 64)
                    movesSearched[playedMoveCount++] = move;

                // Step 14. Make the move
                if (st == null) { st = StateInfoBroker.GetObject(); }
                pos.do_move(move, st, ci, givesCheck);

                // Step 15. Reduced depth search (LMR). If the move fails high will be
                // re-searched at full depth.
                if (
                    !isPvMove
                    && !captureOrPromotion
                    && !dangerous
                    && ss[ssPos].killers0 != move
                    && ss[ssPos].killers1 != move
                    && depth > 3 * DepthC.ONE_PLY
                    && !Utils.is_castle(move))
                {
                    ss[ssPos].reduction = reduction(PvNode, depth, moveCount);
                    Depth d = Math.Max(newDepth - ss[ssPos].reduction, DepthC.ONE_PLY);
                    alpha = SpNode ? sp.alpha : alpha;

                    value = -search(NodeTypeC.NonPV, pos, ss, ssPos + 1, -(alpha + 1), -alpha, d);

                    doFullDepthSearch = (value > alpha && ss[ssPos].reduction != DepthC.DEPTH_ZERO);
                    ss[ssPos].reduction = DepthC.DEPTH_ZERO;
                }
                else
                    doFullDepthSearch = !isPvMove;

                // Step 16. Full depth search, when LMR is skipped or fails high
                if (doFullDepthSearch)
                {
                    alpha = SpNode ? sp.alpha : alpha;
                    value = newDepth < DepthC.ONE_PLY ? -qsearch(NodeTypeC.NonPV, pos, ss, ssPos + 1, -(alpha + 1), -alpha, DepthC.DEPTH_ZERO)
                                               : -search(NodeTypeC.NonPV, pos, ss, ssPos + 1, -(alpha + 1), -alpha, newDepth);
                }

                // Only for PV nodes do a full PV search on the first move or after a fail
                // high, in the latter case search only if value < beta, otherwise let the
                // parent node to fail low with value <= alpha and to try another move.
                if (PvNode && (isPvMove || (value > alpha && (RootNode || value < beta))))
                {
                    value = newDepth < DepthC.ONE_PLY ? -qsearch(NodeTypeC.PV, pos, ss, ssPos + 1, -beta, -alpha, DepthC.DEPTH_ZERO)
                                               : -search(NodeTypeC.PV, pos, ss, ssPos + 1, -beta, -alpha, newDepth);
                }

                // Step 17. Undo move
                pos.undo_move(move);

                Debug.Assert(value > -ValueC.VALUE_INFINITE && value < ValueC.VALUE_INFINITE);

                // Step 18. Check for new best move
                if (SpNode)
                {
                    ThreadHelper.lock_grab(sp.Lock);
                    bestValue = sp.bestValue;
                    alpha = sp.alpha;
                }

                // Finished searching the move. If Signals.stop is true, the search
                // was aborted because the user interrupted the search or because we
                // ran out of time. In this case, the return value of the search cannot
                // be trusted, and we don't update the best move and/or PV.
                if (RootNode && !SignalsStop)
                {
                    int rmPos = find(RootMoves, 0, RootMoves.Count, move);

                    // PV move or new best move ?
                    if (isPvMove || value > alpha)
                    {
                        RootMoves[rmPos].score = value;
                        RootMoves[rmPos].extract_pv_from_tt(pos);

                        // We record how often the best move has been changed in each
                        // iteration. This information is used for time management: When
                        // the best move changes frequently, we allocate some more time.
                        if (!isPvMove && MultiPV == 1)
                            BestMoveChanges++;
                    }
                    else
                        // All other moves but the PV are set to the lowest value, this
                        // is not a problem when sorting becuase sort is stable and move
                        // position in the list is preserved, just the PV is pushed up.
                        RootMoves[rmPos].score = -ValueC.VALUE_INFINITE;

                }

                if (value > bestValue)
                {
                    bestValue = value;
                    bestMove = move;

                    if (PvNode
                        && value > alpha
                        && value < beta) // We want always alpha < beta
                        alpha = value;

                    if (SpNode && !thisThread.cutoff_occurred())
                    {
                        sp.bestValue = value;
                        sp.bestMove = move;
                        sp.alpha = alpha;

                        if (value >= beta)
                            sp.cutoff = true;
                    }
                }

                // Step 19. Check for split
                if (!SpNode
                  && depth >= Threads.min_split_depth()
                  && bestValue < beta
                  && Threads.available_slave_exists(thisThread)
                  && !SignalsStop
                  && !thisThread.cutoff_occurred())
                {
                    bestValue = Threads.split(Constants.FakeSplit, pos, ss, ssPos, alpha, beta, bestValue, ref bestMove, depth, threatMove, moveCount, mp, NT);
                }
            }

            // Step 20. Check for mate and stalemate
            // All legal moves have been searched and if there are no legal moves, it
            // must be mate or stalemate. Note that we can have a false positive in
            // case of Signals.stop or thread.cutoff_occurred() are set, but this is
            // harmless because return value is discarded anyhow in the parent nodes.
            // If we are in a singular extension search then return a fail low score.
            if (moveCount == 0)
            {
                if (st != null) { st.previous = null; StateInfoBroker.Free(); }
                CheckInfoBroker.Free();
                MovePickerBroker.Free(mp);
                MovesSearchedBroker.Free();
                return (excludedMove != 0) ? oldAlpha : inCheck ? Utils.mated_in(ss[ssPos].ply) : ValueC.VALUE_DRAW;
            }

            // If we have pruned all the moves without searching return a fail-low score
            if (bestValue == -ValueC.VALUE_INFINITE)
            {
                Debug.Assert(playedMoveCount == 0);
                bestValue = oldAlpha;
            }

            // Step 21. Update tables
            // Update transposition table entry, killers and history
            if (!SpNode && !SignalsStop && !thisThread.cutoff_occurred())
            {
                move = bestValue <= oldAlpha ? MoveC.MOVE_NONE : bestMove;
                bt = bestValue <= oldAlpha ? Bound.BOUND_UPPER
                     : bestValue >= beta ? Bound.BOUND_LOWER : Bound.BOUND_EXACT;

                TT.store(posKey, value_to_tt(bestValue, ss[ssPos].ply), bt, depth, move, ss[ssPos].eval, ss[ssPos].evalMargin);

                // Update killers and history for non capture cut-off moves
                if (!inCheck
                    && bestValue >= beta
                    && !pos.is_capture_or_promotion(move)
                    )
                {
                    if (move != ss[ssPos].killers0)
                    {
                        ss[ssPos].killers1 = ss[ssPos].killers0;
                        ss[ssPos].killers0 = move;
                    }

                    // Increase history value of the cut-off move
                    Value bonus = (depth * depth);
                    H.add(pos.piece_moved(move), Utils.to_sq(move), bonus);

                    // Decrease history of all the other played non-capture moves
                    for (int i = 0; i < playedMoveCount - 1; i++)
                    {
                        Move m = movesSearched[i];
                        H.add(pos.piece_moved(m), Utils.to_sq(m), -bonus);
                    }
                }
            }

            Debug.Assert(bestValue > -ValueC.VALUE_INFINITE && bestValue < ValueC.VALUE_INFINITE);

            if (st != null) { st.previous = null; StateInfoBroker.Free(); }
            CheckInfoBroker.Free();
            MovePickerBroker.Free(mp);
            MovesSearchedBroker.Free();

            return bestValue;
        }
Пример #23
0
        /// K and two or more pawns vs K. There is just a single rule here: If all pawns
        /// are on the same rook file and are blocked by the defending king, it's a draw.
        internal static ScaleFactor Endgame_KPsK(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) >= 2);
            Debug.Assert(pos.non_pawn_material(weakerSide) == ValueC.VALUE_ZERO);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);

            Square ksq = pos.king_square(weakerSide);
            Bitboard pawns = pos.pieces_PTC(PieceTypeC.PAWN, strongerSide);

            // Are all pawns on the 'a' file?
            if ((pawns & ~Constants.FileABB) == 0)
            {
                // Does the defending king block the pawns?
                if (Utils.square_distance(ksq, Utils.relative_square(strongerSide, SquareC.SQ_A8)) <= 1
                    || (Utils.file_of(ksq) == FileC.FILE_A
                        && ((Utils.in_front_bb_CS(strongerSide, ksq)) & pawns) == 0))
                    return ScaleFactorC.SCALE_FACTOR_DRAW;
            }
            // Are all pawns on the 'h' file?
            else if ((pawns & ~Constants.FileHBB) == 0)
            {
                // Does the defending king block the pawns?
                if (Utils.square_distance(ksq, Utils.relative_square(strongerSide, SquareC.SQ_H8)) <= 1
                    || (Utils.file_of(ksq) == FileC.FILE_H
                        && ((Utils.in_front_bb_CS(strongerSide, ksq)) & pawns) == 0))
                    return ScaleFactorC.SCALE_FACTOR_DRAW;
            }
            return ScaleFactorC.SCALE_FACTOR_NONE;
        }
Пример #24
0
 internal static bool is_KBPsKs(int Us, Position pos)
 {
     return pos.non_pawn_material(Us) == Constants.BishopValueMidgame
            && pos.piece_count(Us, PieceTypeC.BISHOP) == 1 && pos.piece_count(Us, PieceTypeC.PAWN) >= 1;
 }
Пример #25
0
        /// KQ vs KR.  This is almost identical to KX vs K:  We give the attacking
        /// king a bonus for having the kings close together, and for forcing the
        /// defending king towards the edge.  If we also take care to avoid null move
        /// for the defending side in the search, this is usually sufficient to be
        /// able to win KQ vs KR.
        internal static Value Endgame_KQKR(Color strongerSide, Position pos)
        {
            Color weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.QueenValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) == 0);
            Debug.Assert(pos.non_pawn_material(weakerSide) == Constants.RookValueMidgame);
            Debug.Assert(pos.piece_count(weakerSide, PieceTypeC.PAWN) == 0);

            Square winnerKSq = pos.king_square(strongerSide);
            Square loserKSq = pos.king_square(weakerSide);

            Value result = Constants.QueenValueEndgame
                          - Constants.RookValueEndgame
                          + MateTable[loserKSq]
                          + DistanceBonus[Utils.square_distance(winnerKSq, loserKSq)];

            return strongerSide == pos.sideToMove ? result : -result;
        }
Пример #26
0
        /// MaterialTable::material_info() takes a position object as input,
        /// computes or looks up a MaterialInfo object, and returns a pointer to it.
        /// If the material configuration is not already present in the table, it
        /// is stored there, so we don't have to recompute everything when the
        /// same material configuration occurs again.
        internal void probe(Position pos, out MaterialEntry e)
        {
            var key = pos.material_key();
            e = this.entries[((uint)key) & Constants.MaterialTableMask];

            // If mi->key matches the position's material hash key, it means that we
            // have analysed this material configuration before, and we can simply
            // return the information we found the last time instead of recomputing it.
            if (e.key == key)
            {
                return;
            }

            // Initialize MaterialInfo entry
            var npm = pos.non_pawn_material(ColorC.WHITE) + pos.non_pawn_material(ColorC.BLACK);
            e.value = 0;
            e.scalingFunctionWHITE = null;
            e.scalingFunctionBLACK = null;
            e.spaceWeight = 0;
            e.key = key;
            e.factorWHITE = e.factorBLACK = ScaleFactorC.SCALE_FACTOR_NORMAL;
            e.gamePhase = npm >= MidgameLimit
                              ? PhaseC.PHASE_MIDGAME
                              : npm <= EndgameLimit
                                    ? PhaseC.PHASE_ENDGAME
                                    : (((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));

            // Let's look if we have a specialized evaluation function for this
            // particular material configuration. First we look for a fixed
            // configuration one, then a generic one if previous search failed.
            if ((e.evaluationFunction = Endgame.probeValue(key, out e.evaluationFunctionColor)) != null)
            {
                return;
            }

            if (is_KXK(ColorC.WHITE, pos))
            {
                e.evaluationFunction = Endgame.Endgame_KXK;
                e.evaluationFunctionColor = ColorC.WHITE;
                return;
            }

            if (is_KXK(ColorC.BLACK, pos))
            {
                e.evaluationFunction = Endgame.Endgame_KXK;
                e.evaluationFunctionColor = ColorC.BLACK;
                return;
            }

            if ((pos.pieces_PT(PieceTypeC.PAWN) == 0) && (pos.pieces_PT(PieceTypeC.ROOK) == 0)
                && (pos.pieces_PT(PieceTypeC.QUEEN) == 0))
            {
                // Minor piece endgame with at least one minor piece per side and
                // no pawns. Note that the case KmmK is already handled by KXK.
                Debug.Assert(
                    (pos.pieces_PTC(PieceTypeC.KNIGHT, ColorC.WHITE) | pos.pieces_PTC(PieceTypeC.BISHOP, ColorC.WHITE))
                    != 0);
                Debug.Assert(
                    (pos.pieces_PTC(PieceTypeC.KNIGHT, ColorC.BLACK) | pos.pieces_PTC(PieceTypeC.BISHOP, ColorC.BLACK))
                    != 0);

                if (pos.piece_count(ColorC.WHITE, PieceTypeC.BISHOP) + pos.piece_count(ColorC.WHITE, PieceTypeC.KNIGHT)
                    <= 2
                    && pos.piece_count(ColorC.BLACK, PieceTypeC.BISHOP)
                    + pos.piece_count(ColorC.BLACK, PieceTypeC.KNIGHT) <= 2)
                {
                    e.evaluationFunction = Endgame.Endgame_KmmKm;
                    e.evaluationFunctionColor = pos.sideToMove;
                    return;
                }
            }

            // OK, we didn't find any special evaluation function for the current
            // material configuration. Is there a suitable scaling function?
            //
            // We face problems when there are several conflicting applicable
            // scaling functions and we need to decide which one to use.
            EndgameScaleFactor sf;
            int c;
            if ((sf = Endgame.probeScaleFactor(key, out c)) != null)
            {
                if (c == ColorC.WHITE)
                {
                    e.scalingFunctionWHITE = sf;
                }
                else
                {
                    e.scalingFunctionBLACK = sf;
                }
                return;
            }

            // Generic scaling functions that refer to more then one material
            // distribution. Should be probed after the specialized ones.
            // Note that these ones don't return after setting the function.
            if (is_KBPsKs(ColorC.WHITE, pos))
            {
                e.scalingFunctionWHITE = Endgame.Endgame_KBPsK;
            }

            if (is_KBPsKs(ColorC.BLACK, pos))
            {
                e.scalingFunctionBLACK = Endgame.Endgame_KBPsK;
            }

            if (is_KQKRPs(ColorC.WHITE, pos))
            {
                e.scalingFunctionWHITE = Endgame.Endgame_KQKRPs;
            }

            else if (is_KQKRPs(ColorC.BLACK, pos))
            {
                e.scalingFunctionBLACK = Endgame.Endgame_KQKRPs;
            }

            var npm_w = pos.non_pawn_material(ColorC.WHITE);
            var npm_b = pos.non_pawn_material(ColorC.BLACK);

            if (npm_w + npm_b == ValueC.VALUE_ZERO)
            {
                if (pos.piece_count(ColorC.BLACK, PieceTypeC.PAWN) == 0)
                {
                    Debug.Assert(pos.piece_count(ColorC.WHITE, PieceTypeC.PAWN) >= 2);
                    e.scalingFunctionWHITE = Endgame.Endgame_KPsK;
                }
                else if (pos.piece_count(ColorC.WHITE, PieceTypeC.PAWN) == 0)
                {
                    Debug.Assert(pos.piece_count(ColorC.BLACK, PieceTypeC.PAWN) >= 2);
                    e.scalingFunctionBLACK = Endgame.Endgame_KPsK;
                }
                else if (pos.piece_count(ColorC.WHITE, PieceTypeC.PAWN) == 1
                         && pos.piece_count(ColorC.BLACK, PieceTypeC.PAWN) == 1)
                {
                    // This is a special case because we set scaling functions
                    // for both colors instead of only one.
                    e.scalingFunctionWHITE = Endgame.Endgame_KPKP;
                    e.scalingFunctionBLACK = Endgame.Endgame_KPKP;
                }
            }

            // No pawns makes it difficult to win, even with a material advantage
            if (pos.piece_count(ColorC.WHITE, PieceTypeC.PAWN) == 0 && npm_w - npm_b <= Constants.BishopValueMidgame)
            {
                e.factorWHITE =
                    (byte)
                    (npm_w == npm_b || npm_w < Constants.RookValueMidgame
                         ? 0
                         : NoPawnsSF[Math.Min(pos.piece_count(ColorC.WHITE, PieceTypeC.BISHOP), 2)]);
            }

            if (pos.piece_count(ColorC.BLACK, PieceTypeC.PAWN) == 0 && npm_b - npm_w <= Constants.BishopValueMidgame)
            {
                e.factorBLACK =
                    (byte)
                    (npm_w == npm_b || npm_b < Constants.RookValueMidgame
                         ? 0
                         : NoPawnsSF[Math.Min(pos.piece_count(ColorC.BLACK, PieceTypeC.BISHOP), 2)]);
            }

            // Compute the space weight
            if (npm_w + npm_b
                >= 2 * Constants.QueenValueMidgame + 4 * Constants.RookValueMidgame + 2 * Constants.KnightValueMidgame)
            {
                var minorPieceCount = pos.piece_count(ColorC.WHITE, PieceTypeC.KNIGHT)
                                      + pos.piece_count(ColorC.WHITE, PieceTypeC.BISHOP)
                                      + pos.piece_count(ColorC.BLACK, PieceTypeC.KNIGHT)
                                      + pos.piece_count(ColorC.BLACK, PieceTypeC.BISHOP);

                e.spaceWeight = minorPieceCount * minorPieceCount;
            }

            // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
            // for the bishop pair "extended piece", this allow us to be more flexible
            // in defining bishop pair bonuses.
            this.pieceCount[0][0] = pos.piece_count(ColorC.WHITE, PieceTypeC.BISHOP) > 1 ? 1 : 0;
            this.pieceCount[0][1] = pos.piece_count(ColorC.WHITE, PieceTypeC.PAWN);
            this.pieceCount[0][2] = pos.piece_count(ColorC.WHITE, PieceTypeC.KNIGHT);
            this.pieceCount[0][3] = pos.piece_count(ColorC.WHITE, PieceTypeC.BISHOP);
            this.pieceCount[0][4] = pos.piece_count(ColorC.WHITE, PieceTypeC.ROOK);
            this.pieceCount[0][5] = pos.piece_count(ColorC.WHITE, PieceTypeC.QUEEN);

            this.pieceCount[1][0] = pos.piece_count(ColorC.BLACK, PieceTypeC.BISHOP) > 1 ? 1 : 0;
            this.pieceCount[1][1] = pos.piece_count(ColorC.BLACK, PieceTypeC.PAWN);
            this.pieceCount[1][2] = pos.piece_count(ColorC.BLACK, PieceTypeC.KNIGHT);
            this.pieceCount[1][3] = pos.piece_count(ColorC.BLACK, PieceTypeC.BISHOP);
            this.pieceCount[1][4] = pos.piece_count(ColorC.BLACK, PieceTypeC.ROOK);
            this.pieceCount[1][5] = pos.piece_count(ColorC.BLACK, PieceTypeC.QUEEN);

            e.value = (short)((this.imbalance(ColorC.WHITE) - this.imbalance(ColorC.BLACK)) / 16);
        }
Пример #27
0
        /// K, bishop and one or more pawns vs K. It checks for draws with rook pawns and
        /// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW
        /// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
        /// will be used.
        internal static int Endgame_KBPsK(int strongerSide, Position pos)
        {
            var weakerSide = strongerSide ^ 1;

            Debug.Assert(pos.non_pawn_material(strongerSide) == Constants.BishopValueMidgame);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.BISHOP) == 1);
            Debug.Assert(pos.piece_count(strongerSide, PieceTypeC.PAWN) >= 1);

            // No Debug.Assertions about the material of weakerSide, because we want draws to
            // be detected even when the weaker side has some pawns.

            var pawns = pos.pieces_PTC(PieceTypeC.PAWN, strongerSide);
            var pawnFile = Utils.file_of(pos.pieceList[strongerSide][PieceTypeC.PAWN][0]);

            // All pawns are on a single rook file ?
            if ((pawnFile == FileC.FILE_A || pawnFile == FileC.FILE_H) && (((pawns & ~Utils.file_bb_F(pawnFile))) == 0))
            {
                var bishopSq = pos.pieceList[strongerSide][PieceTypeC.BISHOP][0];
                var queeningSq = Utils.relative_square(strongerSide, Utils.make_square(pawnFile, RankC.RANK_8));
                var kingSq = pos.king_square(weakerSide);

                if (Utils.opposite_colors(queeningSq, bishopSq) && Math.Abs(Utils.file_of(kingSq) - pawnFile) <= 1)
                {
                    // The bishop has the wrong color, and the defending king is on the
                    // file of the pawn(s) or the adjacent file. Find the rank of the
                    // frontmost pawn.
                    int rank;
                    if (strongerSide == ColorC.WHITE)
                    {
                        for (rank = RankC.RANK_7; (((Utils.rank_bb_R(rank) & pawns)) == 0); rank--)
                        {
                        }
                        Debug.Assert(rank >= RankC.RANK_2 && rank <= RankC.RANK_7);
                    }
                    else
                    {
                        for (rank = RankC.RANK_2; (((Utils.rank_bb_R(rank) & pawns)) == 0); rank++)
                        {
                        }
                        rank = (rank ^ 7); // HACK to get the relative rank
                        Debug.Assert(rank >= RankC.RANK_2 && rank <= RankC.RANK_7);
                    }
                    // If the defending king has distance 1 to the promotion square or
                    // is placed somewhere in front of the pawn, it's a draw.
                    if (Utils.square_distance(kingSq, queeningSq) <= 1
                        || Utils.relative_rank_CS(strongerSide, kingSq) >= rank)
                    {
                        return ScaleFactorC.SCALE_FACTOR_DRAW;
                    }
                }
            }

            // All pawns on same B or G file? Then potential draw
            if ((pawnFile == FileC.FILE_B || pawnFile == FileC.FILE_G)
                  && (pos.pieces_PT(PieceTypeC.PAWN) & ~Utils.file_bb_F(pawnFile)) == 0
                  && pos.non_pawn_material(weakerSide) == 0
                  && pos.piece_count(weakerSide, PieceTypeC.PAWN) >= 1)
            {
                // Get weaker pawn closest to opponent's queening square
                Bitboard wkPawns = pos.pieces_PTC(PieceTypeC.PAWN, weakerSide);
                Square weakerPawnSq = strongerSide == ColorC.WHITE ? Utils.msb(wkPawns) : Utils.lsb(wkPawns);

                Square strongerKingSq = pos.king_square(strongerSide);
                Square weakerKingSq = pos.king_square(weakerSide);
                Square bishopSq = pos.pieceList[strongerSide][PieceTypeC.BISHOP][0];

                // Draw if weaker pawn is on rank 7, bishop can't attack the pawn, and
                // weaker king can stop opposing opponent's king from penetrating.
                if (Utils.relative_rank_CS(strongerSide, weakerPawnSq) == RankC.RANK_7
                    && Utils.opposite_colors(bishopSq, weakerPawnSq)
                    && Utils.square_distance(weakerPawnSq, weakerKingSq) <= Utils.square_distance(weakerPawnSq, strongerKingSq))
                    return ScaleFactorC.SCALE_FACTOR_DRAW;
            }

            return ScaleFactorC.SCALE_FACTOR_NONE;
        }