Most-popular item recommender
Items are weighted by how often they have been seen in the past. This method is not personalized. This recommender supports incremental updates.
Наследование: ItemRecommender
Пример #1
0
    private static void startMostPopular(ITimedRatings all_data)
    {
        removeUserThreshold(ref all_data);

        Console.WriteLine("Start iteration Test Most Popular ");
        //for (int i = 0; i < 5; i++) {
        ITimedRatings validation_data = new TimedRatings();    // 10%
        ITimedRatings test_data       = new TimedRatings();    // 20%
        ITimedRatings training_data   = new TimedRatings();    // 70%

        readAndSplitData(all_data, ref test_data, ref training_data, ref validation_data);
        IPosOnlyFeedback training_data_pos = new PosOnlyFeedback <SparseBooleanMatrix> ();        // 80%

        for (int index = 0; index < training_data.Users.Count; index++)
        {
            training_data_pos.Add(training_data.Users [index], training_data.Items [index]);
        }


        MyMediaLite.ItemRecommendation.MostPopular recommender = new MyMediaLite.ItemRecommendation.MostPopular();
        recommender.Feedback = training_data_pos;
        DateTime start_time = DateTime.Now;

        recommender.Train();

        Console.Write("Total Training time needed:");
        Console.WriteLine(((TimeSpan)(DateTime.Now - start_time)).TotalMilliseconds);
        Console.WriteLine("Final results in this iteration:");
        var results = MyMediaLite.Eval.ItemsWeatherItemRecommender.EvaluateTime(recommender, validation_data, training_data, "VALIDATION ", false);

        results = MyMediaLite.Eval.ItemsWeatherItemRecommender.EvaluateTime(recommender, test_data, training_data, "TEST ", false);
        //}
    }