private static void startMostPopular(ITimedRatings all_data) { removeUserThreshold(ref all_data); Console.WriteLine("Start iteration Test Most Popular "); //for (int i = 0; i < 5; i++) { ITimedRatings validation_data = new TimedRatings(); // 10% ITimedRatings test_data = new TimedRatings(); // 20% ITimedRatings training_data = new TimedRatings(); // 70% readAndSplitData(all_data, ref test_data, ref training_data, ref validation_data); IPosOnlyFeedback training_data_pos = new PosOnlyFeedback <SparseBooleanMatrix> (); // 80% for (int index = 0; index < training_data.Users.Count; index++) { training_data_pos.Add(training_data.Users [index], training_data.Items [index]); } MyMediaLite.ItemRecommendation.MostPopular recommender = new MyMediaLite.ItemRecommendation.MostPopular(); recommender.Feedback = training_data_pos; DateTime start_time = DateTime.Now; recommender.Train(); Console.Write("Total Training time needed:"); Console.WriteLine(((TimeSpan)(DateTime.Now - start_time)).TotalMilliseconds); Console.WriteLine("Final results in this iteration:"); var results = MyMediaLite.Eval.ItemsWeatherItemRecommender.EvaluateTime(recommender, validation_data, training_data, "VALIDATION ", false); results = MyMediaLite.Eval.ItemsWeatherItemRecommender.EvaluateTime(recommender, test_data, training_data, "TEST ", false); //} }