Пример #1
0
        /// <summary>
        /// Determine if calculation should continue
        /// </summary>
        /// <param name="iterationNumber">Number of iterations passed</param>
        /// <param name="result">Result <see cref="Vector"/>.</param>
        /// <param name="source">Source <see cref="Vector"/>.</param>
        /// <param name="residuals">Residual <see cref="Vector"/>.</param>
        /// <returns><c>true</c> if continue, otherwise <c>false</c></returns>
        bool ShouldContinue(int iterationNumber, Vector<Numerics.Complex32> result, Vector<Numerics.Complex32> source, Vector<Numerics.Complex32> residuals)
        {
            // We stop if either:
            // - the user has stopped the calculation
            // - the calculation needs to be stopped from a numerical point of view (divergence, convergence etc.)

            if (_hasBeenStopped)
            {
                _iterator.Cancel();
                return true;
            }

            var status = _iterator.DetermineStatus(iterationNumber, result, source, residuals);
            return status == IterationStatus.Running || status == IterationStatus.Indetermined;
        }
Пример #2
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix <Numerics.Complex32> matrix, Vector <Numerics.Complex32> input, Vector <Numerics.Complex32> result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(input, matrix);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner <Numerics.Complex32>();
            }

            _preconditioner.Initialize(matrix);

            var d = new DenseVector(input.Count);
            var r = DenseVector.OfVector(input);

            var uodd  = new DenseVector(input.Count);
            var ueven = new DenseVector(input.Count);

            var v = new DenseVector(input.Count);
            var pseudoResiduals = DenseVector.OfVector(input);

            var x     = new DenseVector(input.Count);
            var yodd  = new DenseVector(input.Count);
            var yeven = DenseVector.OfVector(input);

            // Temp vectors
            var temp  = new DenseVector(input.Count);
            var temp1 = new DenseVector(input.Count);
            var temp2 = new DenseVector(input.Count);

            // Define the scalars
            Numerics.Complex32 alpha = 0;
            Numerics.Complex32 eta   = 0;
            float theta = 0;

            // Initialize
            var tau = input.L2Norm().Real;

            Numerics.Complex32 rho = tau * tau;

            // Calculate the initial values for v
            // M temp = yEven
            _preconditioner.Approximate(yeven, temp);

            // v = A temp
            matrix.Multiply(temp, v);

            // Set uOdd
            v.CopyTo(ueven);

            // Start the iteration
            var iterationNumber = 0;

            while (ShouldContinue(iterationNumber, result, input, pseudoResiduals))
            {
                // First part of the step, the even bit
                if (IsEven(iterationNumber))
                {
                    // sigma = (v, r)
                    var sigma = r.ConjugateDotProduct(v);
                    if (sigma.Real.AlmostEqual(0, 1) && sigma.Imaginary.AlmostEqual(0, 1))
                    {
                        // FAIL HERE
                        _iterator.Cancel();
                        break;
                    }

                    // alpha = rho / sigma
                    alpha = rho / sigma;

                    // yOdd = yEven - alpha * v
                    v.Multiply(-alpha, temp1);
                    yeven.Add(temp1, yodd);

                    // Solve M temp = yOdd
                    _preconditioner.Approximate(yodd, temp);

                    // uOdd = A temp
                    matrix.Multiply(temp, uodd);
                }

                // The intermediate step which is equal for both even and
                // odd iteration steps.
                // Select the correct vector
                var uinternal = IsEven(iterationNumber) ? ueven : uodd;
                var yinternal = IsEven(iterationNumber) ? yeven : yodd;

                // pseudoResiduals = pseudoResiduals - alpha * uOdd
                uinternal.Multiply(-alpha, temp1);
                pseudoResiduals.Add(temp1, temp2);
                temp2.CopyTo(pseudoResiduals);

                // d = yOdd + theta * theta * eta / alpha * d
                d.Multiply(theta * theta * eta / alpha, temp);
                yinternal.Add(temp, d);

                // theta = ||pseudoResiduals||_2 / tau
                theta = pseudoResiduals.L2Norm().Real / tau;
                var c = 1 / (float)Math.Sqrt(1 + (theta * theta));

                // tau = tau * theta * c
                tau *= theta * c;

                // eta = c^2 * alpha
                eta = c * c * alpha;

                // x = x + eta * d
                d.Multiply(eta, temp1);
                x.Add(temp1, temp2);
                temp2.CopyTo(x);

                // Check convergence and see if we can bail
                if (!ShouldContinue(iterationNumber, result, input, pseudoResiduals))
                {
                    // Calculate the real values
                    _preconditioner.Approximate(x, result);

                    // Calculate the true residual. Use the temp vector for that
                    // so that we don't pollute the pseudoResidual vector for no
                    // good reason.
                    CalculateTrueResidual(matrix, temp, result, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, result, input, temp))
                    {
                        // We're all good now.
                        return;
                    }
                }

                // The odd step
                if (!IsEven(iterationNumber))
                {
                    if (rho.Real.AlmostEqual(0, 1) && rho.Imaginary.AlmostEqual(0, 1))
                    {
                        // FAIL HERE
                        _iterator.Cancel();
                        break;
                    }

                    var rhoNew = r.ConjugateDotProduct(pseudoResiduals);
                    var beta   = rhoNew / rho;

                    // Update rho for the next loop
                    rho = rhoNew;

                    // yOdd = pseudoResiduals + beta * yOdd
                    yodd.Multiply(beta, temp1);
                    pseudoResiduals.Add(temp1, yeven);

                    // Solve M temp = yOdd
                    _preconditioner.Approximate(yeven, temp);

                    // uOdd = A temp
                    matrix.Multiply(temp, ueven);

                    // v = uEven + beta * (uOdd + beta * v)
                    v.Multiply(beta, temp1);
                    uodd.Add(temp1, temp);

                    temp.Multiply(beta, temp1);
                    ueven.Add(temp1, v);
                }

                // Calculate the real values
                _preconditioner.Approximate(x, result);

                iterationNumber++;
            }
        }