public void DetermineStatus()
        {
            var criteria = new List<IIterationStopCriterium<Complex32>>
            {
                new FailureStopCriterium(),
                new DivergenceStopCriterium(),
                new IterationCountStopCriterium<Complex32>(1)
            };

            var iterator = new Iterator<Complex32>(criteria);

            // First step, nothing should happen.
            iterator.DetermineStatus(
                0,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4));
            Assert.AreEqual(IterationStatus.Continue, iterator.Status, "Incorrect status");

            // Second step, should run out of iterations.
            iterator.DetermineStatus(
                1,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4));
            Assert.AreEqual(IterationStatus.StoppedWithoutConvergence, iterator.Status, "Incorrect status");
        }
Пример #2
0
        /// <summary>
        /// Creates a default iterator with all the <see cref="IIterationStopCriterium"/> objects.
        /// </summary>
        /// <returns>A new <see cref="IIterator"/> object.</returns>
        public static IIterator CreateDefault()
        {
            var iterator = new Iterator();
            iterator.Add(new FailureStopCriterium());
            iterator.Add(new DivergenceStopCriterium());
            iterator.Add(new IterationCountStopCriterium());
            iterator.Add(new ResidualStopCriterium());

            return iterator;
        }
Пример #3
0
        public void CanSolveForRandomMatrix(int order)
        {
            for (var iteration = 5; iteration > 3; iteration--)
            {
                var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
                var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);

                var monitor = new Iterator<Complex32>(new IIterationStopCriterium<Complex32>[]
                    {
                        new IterationCountStopCriterium<Complex32>(1000),
                        new ResidualStopCriterium((float) Math.Pow(1.0/10.0, iteration))
                    });
                var solver = new TFQMR(monitor);
                var matrixX = solver.Solve(matrixA, matrixB);

                if (!monitor.HasConverged)
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                // The solution X row dimension is equal to the column dimension of A
                Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);

                // The solution X has the same number of columns as B
                Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

                var matrixBReconstruct = matrixA*matrixX;

                // Check the reconstruction.
                for (var i = 0; i < matrixB.RowCount; i++)
                {
                    for (var j = 0; j < matrixB.ColumnCount; j++)
                    {
                        Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, (float) Math.Pow(1.0/10.0, iteration - 3));
                        Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, (float) Math.Pow(1.0/10.0, iteration - 3));
                    }
                }

                return;
            }

            Assert.Fail("Solution was not found in 3 tries");
        }
Пример #4
0
        public void CanSolveForRandomVector(int order)
        {
            for (var iteration = 5; iteration > 3; iteration--)
            {
                var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
                var vectorb = MatrixLoader.GenerateRandomDenseVector(order);

                var monitor = new Iterator<Complex32>(new IIterationStopCriterium<Complex32>[]
                    {
                        new IterationCountStopCriterium<Complex32>(1000),
                        new ResidualStopCriterium((float) Math.Pow(1.0/10.0, iteration)),
                    });
                var solver = new GpBiCg(monitor);

                var resultx = solver.Solve(matrixA, vectorb);

                if (!monitor.HasConverged)
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
                var matrixBReconstruct = matrixA*resultx;

                // Check the reconstruction.
                for (var i = 0; i < order; i++)
                {
                    Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float) Math.Pow(1.0/10.0, iteration - 3));
                    Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float) Math.Pow(1.0/10.0, iteration - 3));
                }

                return;
            }

            Assert.Fail("Solution was not found in 3 tries");
        }
Пример #5
0
        public void CanSolveForRandomVector(int order)
        {
            for (var iteration = 5; iteration > 3; iteration--)
            {
                var matrixA = Matrix<Complex32>.Build.Random(order, order, 1);
                var vectorb = Vector<Complex32>.Build.Random(order, 1);

                var monitor = new Iterator<Complex32>(
                    new IterationCountStopCriterium<Complex32>(1000),
                    new ResidualStopCriterium<Complex32>(Math.Pow(1.0 / 10.0, iteration)));

                var solver = new GpBiCg();

                var resultx = matrixA.SolveIterative(vectorb, solver, monitor);

                if (monitor.Status != IterationStatus.Converged)
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
                var matrixBReconstruct = matrixA*resultx;

                // Check the reconstruction.
                for (var i = 0; i < order; i++)
                {
                    Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float) Math.Pow(1.0/10.0, iteration - 3));
                    Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float) Math.Pow(1.0/10.0, iteration - 3));
                }

                return;
            }

            Assert.Fail("Solution was not found in 3 tries");
        }
Пример #6
0
        public void SolveUnitMatrixAndBackMultiply()
        {
            // Create the identity matrix
            var matrix = SparseMatrix.Identity(100);

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex32>(new IIterationStopCriterium<Complex32>[]
                {
                    new IterationCountStopCriterium<Complex32>(MaximumIterations),
                    new ResidualStopCriterium(ConvergenceBoundary),
                    new DivergenceStopCriterium(),
                    new FailureStopCriterium()
                });

            var solver = new TFQMR(monitor);

            // Solve equation Ax = y
            var x = solver.Solve(matrix, y);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.HasConverged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(ConvergenceBoundary, 1), "#05-" + i);
            }
        }
Пример #7
0
        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(25);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 5 x 5 grid
            const int GridSize = 5;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex32>(new IIterationStopCriterium<Complex32>[]
                {
                    new IterationCountStopCriterium<Complex32>(MaximumIterations),
                    new ResidualStopCriterium(ConvergenceBoundary),
                    new DivergenceStopCriterium(),
                    new FailureStopCriterium()
                });
            var solver = new TFQMR(monitor);

            // Solve equation Ax = y
            var x = solver.Solve(matrix, y);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.HasConverged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(1e-4f, 1), "#05-" + i);
            }
        }
Пример #8
0
        public void SolveUnitMatrixAndBackMultiply()
        {
            // Create the identity matrix
            var matrix = SparseMatrix.CreateIdentity(100);

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => Complex32.One);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex32>(
                new IterationCountStopCriterium<Complex32>(MaximumIterations),
                new ResidualStopCriterium<Complex32>(ConvergenceBoundary),
                new DivergenceStopCriterium<Complex32>(),
                new FailureStopCriterium<Complex32>());

            var solver = new BiCgStab();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.GreaterOrEqual(ConvergenceBoundary, (y[i] - z[i]).Magnitude, "#05-" + i);
            }
        }
        public void DetermineStatusWithNegativeIterationNumberThrowsArgumentOutOfRangeException()
        {
            var criteria = new List<IIterationStopCriterium<Complex32>>
            {
                new FailureStopCriterium(),
                new DivergenceStopCriterium(),
                new IterationCountStopCriterium<Complex32>(),
                new ResidualStopCriterium()
            };
            var iterator = new Iterator<Complex32>(criteria);

            Assert.Throws<ArgumentOutOfRangeException>(() => iterator.DetermineStatus(
                -1,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 5),
                DenseVector.Create(3, i => 6)));
        }
        public void ResetToPrecalculationState()
        {
            var criteria = new List<IIterationStopCriterium<Complex32>>
            {
                new FailureStopCriterium(),
                new DivergenceStopCriterium(),
                new IterationCountStopCriterium<Complex32>(1)
            };

            var iterator = new Iterator<Complex32>(criteria);

            // First step, nothing should happen.
            iterator.DetermineStatus(
                0,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4));
            Assert.AreEqual(IterationStatus.Continue, iterator.Status, "Incorrect status");

            iterator.Reset();
            Assert.AreEqual(IterationStatus.Continue, iterator.Status, "Incorrect status");
            Assert.AreEqual(IterationStatus.Continue, criteria[0].Status, "Incorrect status");
            Assert.AreEqual(IterationStatus.Continue, criteria[1].Status, "Incorrect status");
            Assert.AreEqual(IterationStatus.Continue, criteria[2].Status, "Incorrect status");
        }
 public void DetermineStatusWithoutStopCriteriaDoesNotThrow()
 {
     var iterator = new Iterator<Complex32>();
     Assert.DoesNotThrow(() => iterator.DetermineStatus(
         0,
         DenseVector.Create(3, i => 4),
         DenseVector.Create(3, i => 5),
         DenseVector.Create(3, i => 6)));
 }
Пример #12
0
        public void SolveUnitMatrixAndBackMultiply()
        {
            // Create the identity matrix
            var matrix = SparseMatrix.CreateIdentity(100);

            // Create the y vector
            var y = Vector<Complex32>.Build.Dense(matrix.RowCount, 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex32>(
                new IterationCountStopCriterium<Complex32>(MaximumIterations),
                new ResidualStopCriterium<Complex32>(ConvergenceBoundary),
                new DivergenceStopCriterium<Complex32>(),
                new FailureStopCriterium<Complex32>());

            var solver = new TFQMR();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            Assert.LessOrEqual(Distance.Chebyshev(y, z), 2*ConvergenceBoundary);
        }
Пример #13
0
        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(25);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 5 x 5 grid
            const int GridSize = 5;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = Vector<Complex32>.Build.Dense(matrix.RowCount, 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex32>(
                new IterationCountStopCriterium<Complex32>(MaximumIterations),
                new ResidualStopCriterium<Complex32>(ConvergenceBoundary),
                new DivergenceStopCriterium<Complex32>(),
                new FailureStopCriterium<Complex32>());

            var solver = new TFQMR();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            Assert.LessOrEqual(Distance.Chebyshev(y, z), 2*ConvergenceBoundary);
        }
Пример #14
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        /// <param name="iterator">The iterator to use to control when to stop iterating.</param>
        /// <param name="preconditioner">The preconditioner to use for approximations.</param>
        public void Solve(Matrix <Numerics.Complex32> matrix, Vector <Numerics.Complex32> input, Vector <Numerics.Complex32> result, Iterator <Numerics.Complex32> iterator, IPreconditioner <Numerics.Complex32> preconditioner)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(input, matrix);
            }

            if (iterator == null)
            {
                iterator = new Iterator <Numerics.Complex32>();
            }

            if (preconditioner == null)
            {
                preconditioner = new UnitPreconditioner <Numerics.Complex32>();
            }

            preconditioner.Initialize(matrix);

            // x_0 is initial guess
            // Take x_0 = 0
            var xtemp = new DenseVector(input.Count);

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            var residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary scalars
            Numerics.Complex32 beta = 0;

            // Define the temporary vectors
            // rDash_0 = r_0
            var rdash = DenseVector.OfVector(residuals);

            // t_-1 = 0
            var t  = new DenseVector(residuals.Count);
            var t0 = new DenseVector(residuals.Count);

            // w_-1 = 0
            var w = new DenseVector(residuals.Count);

            // Define the remaining temporary vectors
            var c = new DenseVector(residuals.Count);
            var p = new DenseVector(residuals.Count);
            var s = new DenseVector(residuals.Count);
            var u = new DenseVector(residuals.Count);
            var y = new DenseVector(residuals.Count);
            var z = new DenseVector(residuals.Count);

            var temp  = new DenseVector(residuals.Count);
            var temp2 = new DenseVector(residuals.Count);
            var temp3 = new DenseVector(residuals.Count);

            // for (k = 0, 1, .... )
            var iterationNumber = 0;

            while (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) == IterationStatus.Continue)
            {
                // p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
                p.Subtract(u, temp);

                temp.Multiply(beta, temp2);
                residuals.Add(temp2, p);

                // Solve M b_k = p_k
                preconditioner.Approximate(p, temp);

                // s_k = A b_k
                matrix.Multiply(temp, s);

                // alpha_k = (r*_0 * r_k) / (r*_0 * s_k)
                var alpha = rdash.ConjugateDotProduct(residuals) / rdash.ConjugateDotProduct(s);

                // y_k = t_(k-1) - r_k - alpha_k * w_(k-1) + alpha_k s_k
                s.Subtract(w, temp);
                t.Subtract(residuals, y);

                temp.Multiply(alpha, temp2);
                y.Add(temp2, temp3);
                temp3.CopyTo(y);

                // Store the old value of t in t0
                t.CopyTo(t0);

                // t_k = r_k - alpha_k s_k
                s.Multiply(-alpha, temp2);
                residuals.Add(temp2, t);

                // Solve M d_k = t_k
                preconditioner.Approximate(t, temp);

                // c_k = A d_k
                matrix.Multiply(temp, c);
                var cdot = c.ConjugateDotProduct(c);

                // cDot can only be zero if c is a zero vector
                // We'll set cDot to 1 if it is zero to prevent NaN's
                // Note that the calculation should continue fine because
                // c.DotProduct(t) will be zero and so will c.DotProduct(y)
                if (cdot.Real.AlmostEqualNumbersBetween(0, 1) && cdot.Imaginary.AlmostEqualNumbersBetween(0, 1))
                {
                    cdot = 1.0f;
                }

                // Even if we don't want to do any BiCGStab steps we'll still have
                // to do at least one at the start to initialize the
                // system, but we'll only have to take special measures
                // if we don't do any so ...
                var ctdot = c.ConjugateDotProduct(t);
                Numerics.Complex32 eta;
                Numerics.Complex32 sigma;
                if (((_numberOfBiCgStabSteps == 0) && (iterationNumber == 0)) || ShouldRunBiCgStabSteps(iterationNumber))
                {
                    // sigma_k = (c_k * t_k) / (c_k * c_k)
                    sigma = ctdot / cdot;

                    // eta_k = 0
                    eta = 0;
                }
                else
                {
                    var ydot = y.ConjugateDotProduct(y);

                    // yDot can only be zero if y is a zero vector
                    // We'll set yDot to 1 if it is zero to prevent NaN's
                    // Note that the calculation should continue fine because
                    // y.DotProduct(t) will be zero and so will c.DotProduct(y)
                    if (ydot.Real.AlmostEqualNumbersBetween(0, 1) && ydot.Imaginary.AlmostEqualNumbersBetween(0, 1))
                    {
                        ydot = 1.0f;
                    }

                    var ytdot = y.ConjugateDotProduct(t);
                    var cydot = c.ConjugateDotProduct(y);

                    var denom = (cdot * ydot) - (cydot * cydot);

                    // sigma_k = ((y_k * y_k)(c_k * t_k) - (y_k * t_k)(c_k * y_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    sigma = ((ydot * ctdot) - (ytdot * cydot)) / denom;

                    // eta_k = ((c_k * c_k)(y_k * t_k) - (y_k * c_k)(c_k * t_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    eta = ((cdot * ytdot) - (cydot * ctdot)) / denom;
                }

                // u_k = sigma_k s_k + eta_k (t_(k-1) - r_k + beta_(k-1) u_(k-1))
                u.Multiply(beta, temp2);
                t0.Add(temp2, temp);

                temp.Subtract(residuals, temp3);
                temp3.CopyTo(temp);
                temp.Multiply(eta, temp);

                s.Multiply(sigma, temp2);
                temp.Add(temp2, u);

                // z_k = sigma_k r_k +_ eta_k z_(k-1) - alpha_k u_k
                z.Multiply(eta, z);
                u.Multiply(-alpha, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                residuals.Multiply(sigma, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                // x_(k+1) = x_k + alpha_k p_k + z_k
                p.Multiply(alpha, temp2);
                xtemp.Add(temp2, temp3);
                temp3.CopyTo(xtemp);

                xtemp.Add(z, temp3);
                temp3.CopyTo(xtemp);

                // r_(k+1) = t_k - eta_k y_k - sigma_k c_k
                // Copy the old residuals to a temp vector because we'll
                // need those in the next step
                residuals.CopyTo(t0);

                y.Multiply(-eta, temp2);
                t.Add(temp2, residuals);

                c.Multiply(-sigma, temp2);
                residuals.Add(temp2, temp3);
                temp3.CopyTo(residuals);

                // beta_k = alpha_k / sigma_k * (r*_0 * r_(k+1)) / (r*_0 * r_k)
                // But first we check if there is a possible NaN. If so just reset beta to zero.
                beta = (!sigma.Real.AlmostEqualNumbersBetween(0, 1) || !sigma.Imaginary.AlmostEqualNumbersBetween(0, 1)) ? alpha / sigma * rdash.ConjugateDotProduct(residuals) / rdash.ConjugateDotProduct(t0) : 0;

                // w_k = c_k + beta_k s_k
                s.Multiply(beta, temp2);
                c.Add(temp2, w);

                // Get the real value
                preconditioner.Approximate(xtemp, result);

                // Now check for convergence
                if (iterator.DetermineStatus(iterationNumber, result, input, residuals) != IterationStatus.Continue)
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                // Next iteration.
                iterationNumber++;
            }
        }
Пример #15
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        /// <param name="iterator">The iterator to use to control when to stop iterating.</param>
        /// <param name="preconditioner">The preconditioner to use for approximations.</param>
        public void Solve(Matrix <Numerics.Complex32> matrix, Vector <Numerics.Complex32> input, Vector <Numerics.Complex32> result, Iterator <Numerics.Complex32> iterator, IPreconditioner <Numerics.Complex32> preconditioner)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(input, matrix);
            }

            if (iterator == null)
            {
                iterator = new Iterator <Numerics.Complex32>();
            }

            if (preconditioner == null)
            {
                preconditioner = new UnitPreconditioner <Numerics.Complex32>();
            }

            preconditioner.Initialize(matrix);

            // Choose an initial guess x_0
            // Take x_0 = 0
            var xtemp = new DenseVector(input.Count);

            // Choose k vectors q_1, q_2, ..., q_k
            // Build a new set if:
            // a) the stored set doesn't exist (i.e. == null)
            // b) Is of an incorrect length (i.e. too long)
            // c) The vectors are of an incorrect length (i.e. too long or too short)
            var useOld = false;

            if (_startingVectors != null)
            {
                // We don't accept collections with zero starting vectors so ...
                if (_startingVectors.Count <= NumberOfStartingVectorsToCreate(_numberOfStartingVectors, input.Count))
                {
                    // Only check the first vector for sizing. If that matches we assume the
                    // other vectors match too. If they don't the process will crash
                    if (_startingVectors[0].Count == input.Count)
                    {
                        useOld = true;
                    }
                }
            }

            _startingVectors = useOld ? _startingVectors : CreateStartingVectors(_numberOfStartingVectors, input.Count);

            // Store the number of starting vectors. Not really necessary but easier to type :)
            var k = _startingVectors.Count;

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            var residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary values
            var c = new Numerics.Complex32[k];

            // Define the temporary vectors
            var gtemp = new DenseVector(residuals.Count);

            var u     = new DenseVector(residuals.Count);
            var utemp = new DenseVector(residuals.Count);
            var temp  = new DenseVector(residuals.Count);
            var temp1 = new DenseVector(residuals.Count);
            var temp2 = new DenseVector(residuals.Count);

            var zd = new DenseVector(residuals.Count);
            var zg = new DenseVector(residuals.Count);
            var zw = new DenseVector(residuals.Count);

            var d = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // g_0 = r_0
            var g = CreateVectorArray(_startingVectors.Count, residuals.Count);

            residuals.CopyTo(g[k - 1]);

            var w = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // FOR (j = 0, 1, 2 ....)
            var iterationNumber = 0;

            while (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) == IterationStatus.Continue)
            {
                // SOLVE M g~_((j-1)k+k) = g_((j-1)k+k)
                preconditioner.Approximate(g[k - 1], gtemp);

                // w_((j-1)k+k) = A g~_((j-1)k+k)
                matrix.Multiply(gtemp, w[k - 1]);

                // c_((j-1)k+k) = q^T_1 w_((j-1)k+k)
                c[k - 1] = _startingVectors[0].ConjugateDotProduct(w[k - 1]);
                if (c[k - 1].Real.AlmostEqualNumbersBetween(0, 1) && c[k - 1].Imaginary.AlmostEqualNumbersBetween(0, 1))
                {
                    throw new NumericalBreakdownException();
                }

                // alpha_(jk+1) = q^T_1 r_((j-1)k+k) / c_((j-1)k+k)
                var alpha = _startingVectors[0].ConjugateDotProduct(residuals) / c[k - 1];

                // u_(jk+1) = r_((j-1)k+k) - alpha_(jk+1) w_((j-1)k+k)
                w[k - 1].Multiply(-alpha, temp);
                residuals.Add(temp, u);

                // SOLVE M u~_(jk+1) = u_(jk+1)
                preconditioner.Approximate(u, temp1);
                temp1.CopyTo(utemp);

                // rho_(j+1) = -u^t_(jk+1) A u~_(jk+1) / ||A u~_(jk+1)||^2
                matrix.Multiply(temp1, temp);
                var rho = temp.ConjugateDotProduct(temp);

                // If rho is zero then temp is a zero vector and we're probably
                // about to have zero residuals (i.e. an exact solution).
                // So set rho to 1.0 because in the next step it will turn to zero.
                if (rho.Real.AlmostEqualNumbersBetween(0, 1) && rho.Imaginary.AlmostEqualNumbersBetween(0, 1))
                {
                    rho = 1.0f;
                }

                rho = -u.ConjugateDotProduct(temp) / rho;

                // r_(jk+1) = rho_(j+1) A u~_(jk+1) + u_(jk+1)
                u.CopyTo(residuals);

                // Reuse temp
                temp.Multiply(rho, temp);
                residuals.Add(temp, temp2);
                temp2.CopyTo(residuals);

                // x_(jk+1) = x_((j-1)k_k) - rho_(j+1) u~_(jk+1) + alpha_(jk+1) g~_((j-1)k+k)
                utemp.Multiply(-rho, temp);
                xtemp.Add(temp, temp2);
                temp2.CopyTo(xtemp);

                gtemp.Multiply(alpha, gtemp);
                xtemp.Add(gtemp, temp2);
                temp2.CopyTo(xtemp);

                // Check convergence and stop if we are converged.
                if (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) != IterationStatus.Continue)
                {
                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, xtemp, input);

                    // Now recheck the convergence
                    if (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) != IterationStatus.Continue)
                    {
                        // We're all good now.
                        // Exit from the while loop.
                        break;
                    }
                }

                // FOR (i = 1,2, ...., k)
                for (var i = 0; i < k; i++)
                {
                    // z_d = u_(jk+1)
                    u.CopyTo(zd);

                    // z_g = r_(jk+i)
                    residuals.CopyTo(zg);

                    // z_w = 0
                    zw.Clear();

                    // FOR (s = i, ...., k-1) AND j >= 1
                    Numerics.Complex32 beta;
                    if (iterationNumber >= 1)
                    {
                        for (var s = i; s < k - 1; s++)
                        {
                            // beta^(jk+i)_((j-1)k+s) = -q^t_(s+1) z_d / c_((j-1)k+s)
                            beta = -_startingVectors[s + 1].ConjugateDotProduct(zd) / c[s];

                            // z_d = z_d + beta^(jk+i)_((j-1)k+s) d_((j-1)k+s)
                            d[s].Multiply(beta, temp);
                            zd.Add(temp, temp2);
                            temp2.CopyTo(zd);

                            // z_g = z_g + beta^(jk+i)_((j-1)k+s) g_((j-1)k+s)
                            g[s].Multiply(beta, temp);
                            zg.Add(temp, temp2);
                            temp2.CopyTo(zg);

                            // z_w = z_w + beta^(jk+i)_((j-1)k+s) w_((j-1)k+s)
                            w[s].Multiply(beta, temp);
                            zw.Add(temp, temp2);
                            temp2.CopyTo(zw);
                        }
                    }

                    beta = rho * c[k - 1];
                    if (beta.Real.AlmostEqualNumbersBetween(0, 1) && beta.Imaginary.AlmostEqualNumbersBetween(0, 1))
                    {
                        throw new NumericalBreakdownException();
                    }

                    // beta^(jk+i)_((j-1)k+k) = -(q^T_1 (r_(jk+1) + rho_(j+1) z_w)) / (rho_(j+1) c_((j-1)k+k))
                    zw.Multiply(rho, temp2);
                    residuals.Add(temp2, temp);
                    beta = -_startingVectors[0].ConjugateDotProduct(temp) / beta;

                    // z_g = z_g + beta^(jk+i)_((j-1)k+k) g_((j-1)k+k)
                    g[k - 1].Multiply(beta, temp);
                    zg.Add(temp, temp2);
                    temp2.CopyTo(zg);

                    // z_w = rho_(j+1) (z_w + beta^(jk+i)_((j-1)k+k) w_((j-1)k+k))
                    w[k - 1].Multiply(beta, temp);
                    zw.Add(temp, temp2);
                    temp2.CopyTo(zw);
                    zw.Multiply(rho, zw);

                    // z_d = r_(jk+i) + z_w
                    residuals.Add(zw, zd);

                    // FOR (s = 1, ... i - 1)
                    for (var s = 0; s < i - 1; s++)
                    {
                        // beta^(jk+i)_(jk+s) = -q^T_s+1 z_d / c_(jk+s)
                        beta = -_startingVectors[s + 1].ConjugateDotProduct(zd) / c[s];

                        // z_d = z_d + beta^(jk+i)_(jk+s) * d_(jk+s)
                        d[s].Multiply(beta, temp);
                        zd.Add(temp, temp2);
                        temp2.CopyTo(zd);

                        // z_g = z_g + beta^(jk+i)_(jk+s) * g_(jk+s)
                        g[s].Multiply(beta, temp);
                        zg.Add(temp, temp2);
                        temp2.CopyTo(zg);
                    }

                    // d_(jk+i) = z_d - u_(jk+i)
                    zd.Subtract(u, d[i]);

                    // g_(jk+i) = z_g + z_w
                    zg.Add(zw, g[i]);

                    // IF (i < k - 1)
                    if (i < k - 1)
                    {
                        // c_(jk+1) = q^T_i+1 d_(jk+i)
                        c[i] = _startingVectors[i + 1].ConjugateDotProduct(d[i]);
                        if (c[i].Real.AlmostEqualNumbersBetween(0, 1) && c[i].Imaginary.AlmostEqualNumbersBetween(0, 1))
                        {
                            throw new NumericalBreakdownException();
                        }

                        // alpha_(jk+i+1) = q^T_(i+1) u_(jk+i) / c_(jk+i)
                        alpha = _startingVectors[i + 1].ConjugateDotProduct(u) / c[i];

                        // u_(jk+i+1) = u_(jk+i) - alpha_(jk+i+1) d_(jk+i)
                        d[i].Multiply(-alpha, temp);
                        u.Add(temp, temp2);
                        temp2.CopyTo(u);

                        // SOLVE M g~_(jk+i) = g_(jk+i)
                        preconditioner.Approximate(g[i], gtemp);

                        // x_(jk+i+1) = x_(jk+i) + rho_(j+1) alpha_(jk+i+1) g~_(jk+i)
                        gtemp.Multiply(rho * alpha, temp);
                        xtemp.Add(temp, temp2);
                        temp2.CopyTo(xtemp);

                        // w_(jk+i) = A g~_(jk+i)
                        matrix.Multiply(gtemp, w[i]);

                        // r_(jk+i+1) = r_(jk+i) - rho_(j+1) alpha_(jk+i+1) w_(jk+i)
                        w[i].Multiply(-rho * alpha, temp);
                        residuals.Add(temp, temp2);
                        temp2.CopyTo(residuals);

                        // We can check the residuals here if they're close
                        if (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) != IterationStatus.Continue)
                        {
                            // Recalculate the residuals and go round again. This is done to ensure that
                            // we have the proper residuals.
                            CalculateTrueResidual(matrix, residuals, xtemp, input);
                        }
                    }
                } // END ITERATION OVER i

                iterationNumber++;
            }

            // copy the temporary result to the real result vector
            xtemp.CopyTo(result);
        }