GetLayerTotalNeuronCount() публичный Метод

Get the total (including bias and context) neuron cont for a layer.
public GetLayerTotalNeuronCount ( int l ) : int
l int The layer.
Результат int
Пример #1
0
 public AnalyzeNetwork(BasicNetwork network)
 {
     int num3;
     int num4;
     int layerTotalNeuronCount;
     int layerNeuronCount;
     int num7;
     int num8;
     double num9;
     int num10;
     int num11;
     double num12;
     int num = 0;
     int num2 = 0;
     IList<double> list = new List<double>();
     IList<double> list2 = new List<double>();
     if (0 != 0)
     {
         goto Label_0115;
     }
     IList<double> values = new List<double>();
     if ((((uint) num2) | 1) != 0)
     {
         num3 = 0;
         goto Label_00C9;
     }
     Label_000B:
     this._xd16d54155d6ebc35 = new NumericRange(values);
     this._x8158512e31b17fc4 = EngineArray.ListToDouble(list2);
     this._x7cd672b98e9d2817 = EngineArray.ListToDouble(values);
     this._x5933bfade0487265 = EngineArray.ListToDouble(list);
     Label_003D:
     if (((uint) layerNeuronCount) >= 0)
     {
     }
     return;
     Label_0057:
     if ((((uint) num2) + ((uint) num2)) < 0)
     {
         goto Label_0317;
     }
     this._x465229d781237721 = num2;
     if (((uint) layerTotalNeuronCount) > uint.MaxValue)
     {
         goto Label_003D;
     }
     this._x2f33d779e5a20b28 = new NumericRange(list2);
     if ((((uint) num3) + ((uint) layerTotalNeuronCount)) > uint.MaxValue)
     {
         goto Label_01E8;
     }
     this._x232c44e69c86297f = new NumericRange(list);
     if ((((uint) num11) + ((uint) layerTotalNeuronCount)) <= uint.MaxValue)
     {
         goto Label_000B;
     }
     goto Label_01F2;
     Label_00C3:
     num3++;
     Label_00C9:
     if (num3 < (network.LayerCount - 1))
     {
         goto Label_0317;
     }
     this._x0dcd8230e4ec0670 = num;
     goto Label_0057;
     Label_00FF:
     if (num11 < layerNeuronCount)
     {
         num12 = network.GetWeight(num3, num10, num11);
         goto Label_0127;
     }
     goto Label_00C3;
     Label_0115:
     values.Add(num12);
     num2++;
     if (0 == 0)
     {
         num11++;
         if (((uint) num9) < 0)
         {
             goto Label_02BF;
         }
         goto Label_00FF;
     }
     goto Label_0184;
     Label_0127:
     if (!network.Structure.ConnectionLimited)
     {
         goto Label_014B;
     }
     Label_0134:
     if (Math.Abs(num12) < network.Structure.ConnectionLimit)
     {
         num++;
         if ((((uint) num8) - ((uint) num12)) >= 0)
         {
             goto Label_0167;
         }
         goto Label_000B;
     }
     Label_014B:
     list.Add(num12);
     if ((((uint) num7) & 0) == 0)
     {
         goto Label_0115;
     }
     Label_0167:
     if ((((uint) num2) & 0) == 0)
     {
         goto Label_014B;
     }
     goto Label_0127;
     Label_0184:
     if (4 != 0)
     {
         goto Label_00C3;
     }
     goto Label_0057;
     Label_01E8:
     num11 = 0;
     goto Label_00FF;
     Label_01F2:
     num8++;
     Label_01F8:
     if (num8 < layerNeuronCount)
     {
         goto Label_02BF;
     }
     num7++;
     Label_0207:
     if (num7 < num4)
     {
         num8 = 0;
         goto Label_01F8;
     }
     if (((((uint) num8) | 1) != 0) && (num4 == layerTotalNeuronCount))
     {
         goto Label_0184;
     }
     num10 = num4;
     goto Label_01E8;
     Label_02BF:
     num9 = network.GetWeight(num3, num7, num8);
     if (0 == 0)
     {
         if (network.Structure.ConnectionLimited && (((((uint) num10) + ((uint) num)) < 0) || (Math.Abs(num9) < network.Structure.ConnectionLimit)))
         {
             num++;
         }
         list2.Add(num9);
     }
     values.Add(num9);
     num2++;
     goto Label_01F2;
     Label_0317:
     num4 = network.GetLayerNeuronCount(num3);
     layerTotalNeuronCount = network.GetLayerTotalNeuronCount(num3);
     if (((uint) num7) > uint.MaxValue)
     {
         goto Label_0134;
     }
     layerNeuronCount = network.GetLayerNeuronCount(num3 + 1);
     num7 = 0;
     if ((((uint) layerTotalNeuronCount) + ((uint) layerTotalNeuronCount)) >= 0)
     {
     }
     goto Label_0207;
 }
Пример #2
0
        /// <summary>
        /// Randomize the connections between two layers.
        /// </summary>
        /// <param name="network">The network to randomize.</param>
        /// <param name="fromLayer">The starting layer.</param>
        private void RandomizeSynapse(BasicNetwork network, int fromLayer)
        {
            int toLayer = fromLayer + 1;
            int toCount = network.GetLayerNeuronCount(toLayer);
            int fromCount = network.GetLayerNeuronCount(fromLayer);
            int fromCountTotalCount = network.GetLayerTotalNeuronCount(fromLayer);
            IActivationFunction af = network.GetActivation(toLayer);
            double low = CalculateRange(af, Double.NegativeInfinity);
            double high = CalculateRange(af, Double.PositiveInfinity);

            double b = 0.7d * Math.Pow(toCount, (1d / fromCount)) / (high - low);

            for (int toNeuron = 0; toNeuron < toCount; toNeuron++)
            {
                if (fromCount != fromCountTotalCount)
                {
                    double w = RangeRandomizer.Randomize(-b, b);
                    network.SetWeight(fromLayer, fromCount, toNeuron, w);
                }
                for (int fromNeuron = 0; fromNeuron < fromCount; fromNeuron++)
                {
                    double w = RangeRandomizer.Randomize(0, b);
                    network.SetWeight(fromLayer, fromNeuron, toNeuron, w);
                }
            }
        }
Пример #3
0
        /// <summary>
        /// Randomize one level of a neural network.
        /// </summary>
        ///
        /// <param name="network">The network to randomize</param>
        /// <param name="fromLayer">The from level to randomize.</param>
        public override void Randomize(BasicNetwork network, int fromLayer)
        {
            int fromCount = network.GetLayerTotalNeuronCount(fromLayer);
            int toCount = network.GetLayerNeuronCount(fromLayer + 1);

            for (int fromNeuron = 0; fromNeuron < fromCount; fromNeuron++)
            {
                for (int toNeuron = 0; toNeuron < toCount; toNeuron++)
                {
                    double v = CalculateValue(toCount);
                    network.SetWeight(fromLayer, fromNeuron, toNeuron, v);
                }
            }
        }
        /// <summary>
        /// Randomize one level of a neural network.
        /// </summary>
        ///
        /// <param name="network">The network to randomize</param>
        /// <param name="fromLayer">The from level to randomize.</param>
        public virtual void Randomize(BasicNetwork network, int fromLayer)
        {
            int fromCount = network.GetLayerTotalNeuronCount(fromLayer);
            int toCount = network.GetLayerNeuronCount(fromLayer + 1);

            for (int fromNeuron = 0; fromNeuron < fromCount; fromNeuron++)
            {
                for (int toNeuron = 0; toNeuron < toCount; toNeuron++)
                {
                    double v = network.GetWeight(fromLayer, fromNeuron, toNeuron);
                    v = Randomize(v);
                    network.SetWeight(fromLayer, fromNeuron, toNeuron, v);
                }
            }
        }
        /// <summary>
        /// Randomize one level of a neural network.
        /// </summary>
        ///
        /// <param name="network">The network to randomize</param>
        /// <param name="fromLayer">The from level to randomize.</param>
        public override void Randomize(BasicNetwork network, int fromLayer)
        {
            int fromCount = network.GetLayerTotalNeuronCount(fromLayer);
            int toCount = network.GetLayerNeuronCount(fromLayer + 1);

            for (int toNeuron = 0; toNeuron < toCount; toNeuron++)
            {
                double n = 0.0;
                for (int fromNeuron = 0; fromNeuron < fromCount; fromNeuron++)
                {
                    double w = network.GetWeight(fromLayer, fromNeuron, toNeuron);
                    n += w * w;
                }
                n = Math.Sqrt(n);


                for (int fromNeuron = 0; fromNeuron < fromCount; fromNeuron++)
                {
                    double w = network.GetWeight(fromLayer, fromNeuron, toNeuron);
                    w = _beta * w / n;
                    network.SetWeight(fromLayer, fromNeuron, toNeuron, w);
                }
            }
        }
Пример #6
0
 public override void Randomize(BasicNetwork network, int fromLayer)
 {
     int num2;
     int num3;
     double num4;
     int num5;
     double num6;
     int num7;
     double num8;
     int layerTotalNeuronCount = network.GetLayerTotalNeuronCount(fromLayer);
     goto Label_00DF;
     Label_0011:
     if (num3 < num2)
     {
         num4 = 0.0;
         num5 = 0;
     }
     else if ((((uint) num8) - ((uint) layerTotalNeuronCount)) >= 0)
     {
         return;
     }
     while (true)
     {
         if (num5 >= layerTotalNeuronCount)
         {
             num4 = Math.Sqrt(num4);
             num7 = 0;
             if ((((uint) num4) + ((uint) num2)) < 0)
             {
                 break;
             }
             goto Label_0065;
         }
         num6 = network.GetWeight(fromLayer, num5, num3);
         num4 += num6 * num6;
         num5++;
     }
     Label_0044:
     if ((((uint) fromLayer) + ((uint) num6)) > uint.MaxValue)
     {
         goto Label_00DF;
     }
     num7++;
     Label_0065:
     if (num7 < layerTotalNeuronCount)
     {
         num8 = network.GetWeight(fromLayer, num7, num3);
     }
     else
     {
         num3++;
         goto Label_0011;
     }
     Label_009C:
     num8 = (this._xd7d571ecee49d1e4 * num8) / num4;
     network.SetWeight(fromLayer, num7, num3, num8);
     goto Label_0044;
     Label_00DF:
     num2 = network.GetLayerNeuronCount(fromLayer + 1);
     if (((uint) num8) > uint.MaxValue)
     {
         goto Label_009C;
     }
     num3 = 0;
     goto Label_0011;
 }
Пример #7
0
 public override void Randomize(BasicNetwork network, int fromLayer)
 {
     int num4;
     double num5;
     int layerTotalNeuronCount = network.GetLayerTotalNeuronCount(fromLayer);
     int layerNeuronCount = network.GetLayerNeuronCount(fromLayer + 1);
     int fromNeuron = 0;
     if (((uint) fromLayer) < 0)
     {
         goto Label_0012;
     }
     Label_000E:
     if (fromNeuron < layerTotalNeuronCount)
     {
         num4 = 0;
         goto Label_0054;
     }
     Label_0012:
     if (((uint) num5) > uint.MaxValue)
     {
         goto Label_0054;
     }
     if ((((uint) fromNeuron) + ((uint) fromNeuron)) >= 0)
     {
         return;
     }
     Label_003C:
     num5 = this.x7417261f548b2c9b(layerNeuronCount);
     network.SetWeight(fromLayer, fromNeuron, num4, num5);
     num4++;
     Label_0054:
     if (num4 < layerNeuronCount)
     {
         goto Label_003C;
     }
     fromNeuron++;
     goto Label_000E;
 }
Пример #8
0
 public virtual void Randomize(BasicNetwork network, int fromLayer)
 {
     int num4;
     double num5;
     int layerTotalNeuronCount = network.GetLayerTotalNeuronCount(fromLayer);
     int layerNeuronCount = network.GetLayerNeuronCount(fromLayer + 1);
     int fromNeuron = 0;
     goto Label_002C;
     Label_000D:
     fromNeuron++;
     if ((((uint) fromNeuron) + ((uint) fromNeuron)) > uint.MaxValue)
     {
         goto Label_004B;
     }
     if (0 != 0)
     {
         goto Label_003C;
     }
     Label_002C:
     if (fromNeuron < layerTotalNeuronCount)
     {
         goto Label_0067;
     }
     return;
     Label_003C:
     network.SetWeight(fromLayer, fromNeuron, num4, num5);
     num4++;
     Label_004B:
     if (num4 < layerNeuronCount)
     {
         num5 = network.GetWeight(fromLayer, fromNeuron, num4);
         if (((uint) num5) >= 0)
         {
             num5 = this.Randomize(num5);
             goto Label_003C;
         }
         goto Label_000D;
     }
     if ((((uint) fromLayer) + ((uint) fromLayer)) >= 0)
     {
         goto Label_000D;
     }
     Label_0067:
     num4 = 0;
     goto Label_004B;
 }