CalculateError() публичный Метод

Calculate the error for this neural network.
public CalculateError ( IMLDataSet data ) : double
data IMLDataSet The training set.
Результат double
 public double EvaluateMPROP(BasicNetwork network, IMLDataSet data)
 {
     var train = new ResilientPropagation(network, data);
     long start = DateTime.Now.Ticks;
     Console.WriteLine(@"Training 20 Iterations with MPROP");
     for (int i = 1; i <= 20; i++)
     {
         train.Iteration();
         Console.WriteLine("Iteration #" + i + " Error:" + train.Error);
     }
     //train.finishTraining();
     long stop = DateTime.Now.Ticks;
     double diff = new TimeSpan(stop - start).Seconds;
     Console.WriteLine("MPROP Result:" + diff + " seconds.");
     Console.WriteLine("Final MPROP error: " + network.CalculateError(data));
     return diff;
 }
 public double Evaluate(BasicNetwork network, IMLDataSet training)
 {
     var rprop = new ResilientPropagation(network, training);
     double startingError = network.CalculateError(training);
     for (int i = 0; i < ITERATIONS; i++)
     {
         rprop.Iteration();
     }
     double finalError = network.CalculateError(training);
     return startingError - finalError;
 }
        public void Train()
        {
            TrainingErrorData.Clear();
            TestingIdealData.Clear();
            TestingResultsData.Clear();
            _network = ConstructNetwork(TrainingSet.InputSize,TrainingSet.IdealSize);

            //var trainer = new Backpropagation(_network, TrainingSet, LearningRate, Momentum);
            var trainer = new ResilientPropagation(_network, TrainingSet);
            double[] resultsArray = new double[TrainingSet.Count];
            double[] errorArray = new double[NumberOfIterations];
            IsBusy = true;
            for (int iteration = 0; iteration < numberOfIterations; iteration++)
            {
                trainer.Iteration();
                TrainingErrorData.Add(new Tuple<int,double>(iteration, trainer.Error));
            }
            IsBusy = false;
            for(int i = 0; i < TrainingSet.Count; i++)
            {
               resultsArray[i] = _network.Classify(TrainingSet[i].Input);
            }
            TrainingErrorValue = _network.CalculateError(TrainingSet);
            Stage = Stage.Trained;
        }