Пример #1
0
        public Network(int inputCount, LayerSettings[] hiddenLayerSettings, LayerSettings outputLayerSettings)
        {
            InputCount = inputCount;

            if (hiddenLayerSettings is not null)
            {
                int layerInputCount = inputCount;
            }
        }
Пример #2
0
        internal static float[] PrepareMemoryBuffer(int inputCount, LayerSettings[] hiddenLayerSettings, LayerSettings outputLayerSettings)
        {
            var totalNumber = 0;

            totalNumber += inputCount; // First, keep buffer to write the network input
            var layerInputCount = inputCount;

            if (hiddenLayerSettings?.Length > 0)
            {
                var hiddenLayerNumber = 0;
                foreach (var setting in hiddenLayerSettings)
                {
                    if (setting.NeuronCount <= 0)
                    {
                        throw new ArgumentOutOfRangeException($"Every hidden layer must have non-negative neuron count: " +
                                                              $"HiddenLayerNumber {hiddenLayerNumber}; NeuronCount: {setting.NeuronCount}");
                    }
                    totalNumber    += (layerInputCount + 1) * setting.NeuronCount; // For each neuron, we have 1 weight per input + 1 bias
                    totalNumber    += setting.NeuronCount;                         // Outputs of the layer
                    layerInputCount = setting.NeuronCount;                         // One layer's output is nex one's input
                    hiddenLayerNumber++;
                }
            }
            totalNumber += (layerInputCount + 1) * outputLayerSettings.NeuronCount;
            totalNumber += outputLayerSettings.NeuronCount; // Network's outputs

            return(new float[totalNumber]);
        }