/// <summary> /// Matches two sets of points using RANSAC. /// </summary> /// /// <returns>The homography matrix matching x1 and x2.</returns> /// public MatrixH Estimate(PointF[] points1, PointF[] points2) { // Initial argument checks if (points1.Length != points2.Length) { throw new ArgumentException("The number of points should be equal."); } if (points1.Length < 4) { throw new ArgumentException("At least four points are required to fit an homography"); } // Normalize each set of points so that the origin is // at centroid and mean distance from origin is sqrt(2). MatrixH T1, T2; this.pointSet1 = Tools.Normalize(points1, out T1); this.pointSet2 = Tools.Normalize(points2, out T2); d2 = new double[points1.Length]; // Compute RANSAC and find the inlier points MatrixH H = ransac.Compute(points1.Length, out inliers); if (inliers == null || inliers.Length < 4) { //throw new Exception("RANSAC could not find enough points to fit an homography."); return(null); } // Compute the final homography considering all inliers H = homography(inliers); // Denormalize H = T2.Inverse() * (H * T1); return(H); }
/// <summary> /// Creates an homography matrix matching points /// from a set of points to another. /// </summary> public static MatrixH Homography(PointH[] points1, PointH[] points2) { // Initial argument checkings if (points1.Length != points2.Length) { throw new ArgumentException("The number of points should be equal."); } if (points1.Length < 4) { throw new ArgumentException("At least four points are required to fit an homography"); } int N = points1.Length; MatrixH T1, T2; // Normalize input points points1 = points1.Normalize(out T1); points2 = points2.Normalize(out T2); // Create the matrix A double[,] A = new double[3 * N, 9]; for (int i = 0; i < N; i++) { PointH X = points1[i]; double x = points2[i].X; double y = points2[i].Y; double w = points2[i].W; int r = 3 * i; A[r, 0] = 0; A[r, 1] = 0; A[r, 2] = 0; A[r, 3] = -w * X.X; A[r, 4] = -w * X.Y; A[r, 5] = -w * X.W; A[r, 6] = y * X.X; A[r, 7] = y * X.Y; A[r, 8] = y * X.W; r++; A[r, 0] = w * X.X; A[r, 1] = w * X.Y; A[r, 2] = w * X.W; A[r, 3] = 0; A[r, 4] = 0; A[r, 5] = 0; A[r, 6] = -x * X.X; A[r, 7] = -x * X.Y; A[r, 8] = -x * X.W; r++; A[r, 0] = -y * X.X; A[r, 1] = -y * X.Y; A[r, 2] = -y * X.W; A[r, 3] = x * X.X; A[r, 4] = x * X.Y; A[r, 5] = x * X.W; A[r, 6] = 0; A[r, 7] = 0; A[r, 8] = 0; } // Create the singular value decomposition SingularValueDecomposition svd = new SingularValueDecomposition(A, false, true); double[,] V = svd.RightSingularVectors; // Extract the homography matrix MatrixH H = new MatrixH((float)V[0, 8], (float)V[1, 8], (float)V[2, 8], (float)V[3, 8], (float)V[4, 8], (float)V[5, 8], (float)V[6, 8], (float)V[7, 8], (float)V[8, 8]); // Denormalize H = T2.Inverse().Multiply(H.Multiply(T1)); return(H); }