[TestMethod] public void M4RootCube() => Test(@"\frac{1}{\sqrt[4]{x}^{3}}", MathS.Pow(x, 3m / -4));
[TestMethod] public void IM1Pow() => Test(@"{\left(-1 + i\right)}^{x}", MathS.Pow(im1, x));
[TestMethod] public void SquareRootAsPow() => Test(@"\sqrt{x}", MathS.Pow(x, 1m / 2));
[TestMethod] public void M2ICubeRoot() => Test(@"\sqrt[3]{-2i}", MathS.Pow(m2i, 1m / 3));
[TestMethod] public void PowM2I() => Test(@"{2}^{-2i}", MathS.Pow(2, m2i));
[TestMethod] public void M2Pow() => Test(@"{-2}^{x}", MathS.Pow(-2, x));
[TestMethod] public void Frac34Pow() => Test(@"{\left(\frac{3}{4}\right)}^{x}", MathS.Pow(frac34, x));
private static Entity Sqrt(Entity a) => MathS.Pow(a, Number.CreateRational(1, 2));
public void TestPatt1() { var expr = MathS.Pow(x * 4, 3); Assert.IsTrue(expr.Simplify() == 64 * MathS.Pow(x, 3)); }
[TestMethod] public void PowPowNumber() => Test(@"{\left({12}^{23}\right)}^{34}", MathS.Pow(MathS.Pow(12, 23), 34));
private static Entity Cubt(Entity a) => MathS.Pow(a, Number.CreateRational(1, 3));
[TestMethod] public void PowPow() => Test("{x}^{{x}^{x}}", MathS.Pow(x, MathS.Pow(x, x)));
[TestMethod] public void PowBase10() => Test("{10}^{x}", MathS.Pow(10, x));
[TestMethod] public void PowBase2() => Test("{2}^{x}", MathS.Pow(2, x));
[TestMethod] public void PowM1() => Test(@"{x}^{-1}", MathS.Pow(x, m1));
/// <summary> /// Inverts operator and returns a set /// x^2 = a /// => x = sqrt(a) /// x = -sqrt(a) /// </summary> /// <param name="func"></param> /// <param name="value"></param> /// <param name="x"></param> /// <returns></returns> public static Set InvertOperatorEntity(OperatorEntity func, Entity value, Entity x) { Entity a, un; int arg; if (func.Children[0].FindSubtree(x) != null) { a = func.Children[1]; un = func.Children[0]; arg = 0; } else { a = func.Children[0]; un = func.Children[1]; arg = 1; } var n = Utils.FindNextIndex(func + value, "n"); switch (func.Name) { case "sumf": // x + a = value => x = value - a return(FindInvertExpression(un, value - a, x)); case "minusf": if (arg == 0) { // x - a = value => x = value + a return(FindInvertExpression(un, value + a, x)); } else { // a - x = value => x = a - value return(FindInvertExpression(un, a - value, x)); } case "mulf": // x * a = value => x = value / a return(FindInvertExpression(un, value / a, x)); case "divf": if (arg == 0) { // x / a = value => x = a * value return(FindInvertExpression(un, value * a, x)); } else { // a / x = value => x = a / value return(FindInvertExpression(un, a / value, x)); } case "powf": if (arg == 0) { // x ^ a = value => x = value ^ (1/a) if (a.entType == Entity.EntType.NUMBER && a.GetValue().IsInteger()) { var res = new Set(); foreach (var root in Number.GetAllRoots(1, a.GetValue().AsIntegerNumber()).FiniteSet()) { res.AddRange(FindInvertExpression(un, root * MathS.Pow(value, 1 / a), x)); } return(res); } else { return(FindInvertExpression(un, MathS.Pow(value, 1 / a), x)); } } else { // a ^ x = value => x = log(a, value) return(FindInvertExpression(un, MathS.Log(a, value) + 2 * MathS.i * n * MathS.pi, x)); } default: throw new SysException("Unknown operator"); } }
[TestMethod] public void M1Pow() => Test(@"{-1}^{x}", MathS.Pow(m1, x));
/// <summary> /// Returns a set of possible roots of a function, e. g. /// sin(x) = a => /// x = arcsin(a) + 2 pi n /// x = pi - arcsin(a) + 2 pi n /// </summary> /// <param name="func"></param> /// <param name="value"></param> /// <param name="x"></param> /// <returns></returns> public static Set InvertFunctionEntity(FunctionEntity func, Entity value, Entity x) { Entity a = func.Children[0]; Entity b = func.Children.Count == 2 ? func.Children[1] : null; int arg = func.Children.Count == 2 && func.Children[1].FindSubtree(x) != null ? 1 : 0; var n = Utils.FindNextIndex(func + value, "n"); var res = new Set(); var pi = MathS.pi; Set GetNotNullEntites(Set set) { return(set.FiniteWhere(el => el.entType != Entity.EntType.NUMBER || el.GetValue().IsDefinite())); } switch (func.Name) { // Consider case when sin(sin(x)) where double-mention of n occures case "sinf": { // sin(x) = value => x = arcsin(value) + 2pi * n res.AddRange(GetNotNullEntites(FindInvertExpression(a, MathS.Arcsin(value) + 2 * pi * n, x))); // sin(x) = value => x = pi - arcsin(value) + 2pi * n res.AddRange(GetNotNullEntites(FindInvertExpression(a, pi - MathS.Arcsin(value) + 2 * pi * n, x))); return(res); } case "cosf": { // cos(x) = value => x = arccos(value) + 2pi * n res.AddRange(GetNotNullEntites(FindInvertExpression(a, MathS.Arccos(value) + 2 * pi * n, x))); // cos(x) = value => x = -arccos(value) + 2pi * n res.AddRange(GetNotNullEntites(FindInvertExpression(a, -MathS.Arccos(value) - 2 * pi * n, x))); return(res); } case "tanf": { var inverted = FindInvertExpression(a, MathS.Arctan(value) + pi * n, x); // tan(x) = value => x = arctan(value) + pi * n res.AddRange(GetNotNullEntites(inverted)); return(res); } case "cotanf": { var inverted = FindInvertExpression(a, MathS.Arccotan(value) + pi * n, x); // cotan(x) = value => x = arccotan(value) res.AddRange(GetNotNullEntites(inverted)); return(res); } case "arcsinf": // arcsin(x) = value => x = sin(value) if (EntityInBounds(value, ArcsinFrom, ArcsinTo)) { return(GetNotNullEntites(FindInvertExpression(a, MathS.Sin(value), x))); } else { return(Empty); } case "arccosf": // arccos(x) = value => x = cos(value) if (EntityInBounds(value, ArccosFrom, ArccosTo)) { return(GetNotNullEntites(FindInvertExpression(a, MathS.Cos(value), x))); } else { return(Empty); } case "arctanf": // arctan(x) = value => x = tan(value) return(GetNotNullEntites(FindInvertExpression(a, MathS.Tan(value), x))); case "arccotanf": // arccotan(x) = value => x = cotan(value) return(GetNotNullEntites(FindInvertExpression(a, MathS.Cotan(value), x))); case "logf": if (arg != 0) { // log(x, a) = value => x = a ^ value return(GetNotNullEntites(FindInvertExpression(b, MathS.Pow(a, value), x))); } else { // log(a, x) = value => a = x ^ value => x = a ^ (1 / value) return(GetNotNullEntites(FindInvertExpression(a, MathS.Pow(b, 1 / value), x))); } default: throw new SysException("Unknown function"); } }
[TestMethod] public void Frac34CubeRoot() => Test(@"\sqrt[3]{\frac{3}{4}}", MathS.Pow(frac34, 1m / 3));
[TestMethod] public void MPow() => Test(@"{\left(-x\right)}^{x}", MathS.Pow(-x, x));
[TestMethod] public void PowFrac34() => Test(@"\sqrt[4]{2}^{3}", MathS.Pow(2, frac34));
[TestMethod] public void AddPow() => Test(@"{\left(3+4\right)}^{x}", MathS.Pow("3+4", x));
[TestMethod] public void M2IPow() => Test(@"{\left(-2i\right)}^{x}", MathS.Pow(m2i, x));
[TestMethod] public void SubtractPow() => Test(@"{\left(3-4\right)}^{x}", MathS.Pow("3-4", x));
[TestMethod] public void IM1CubeRoot() => Test(@"\sqrt[3]{-1 + i}", MathS.Pow(im1, 1m / 3));
[TestMethod] public void MultiplyPow() => Test(@"{\left(3\times 4\right)}^{x}", MathS.Pow("3*4", x));
[TestMethod] public void PowIM1() => Test(@"{2}^{-1 + i}", MathS.Pow(2, im1));
[TestMethod] public void DividePow() => Test(@"{\left(\frac{3}{4}\right)}^{x}", MathS.Pow("3/4", x));
[TestMethod] public void Cube() => Test(@"{x}^{3}", MathS.Pow(x, 3));
[TestMethod] public void M3Root() => Test(@"\frac{1}{\sqrt[3]{x}}", MathS.Pow(x, 1m / -3));