private void ClassifyDataSetDT()
        {
            string[] queries = BuildDataSetFromData();
            if (DT.Columns.Contains(PRML))
            {
                DT.Columns.Remove(PRML);
            }
            DT.Columns.Add(PRML, typeof(string));
            int i = 0;

            foreach (DataRow row in DT.Rows)
            {
                row[PRML] = DecisionTree.Classify(new Datarow(queries[i])).ToString();
                i++;
            }
        }
        private void pictureBox1_Paint(object sender, PaintEventArgs e)
        {
            if (this.root == null)
            {
                MessageBox.Show("Generating tree. This might take a while", "Please wait");

                dmC.LoadCSV();

                Dictionary <String, Patient> trainData = dmC.GetPatients();

                DecisionTree <Patient> destree = new DecisionTree <Patient>(trainData);

                List <Patient> rows = new List <Patient>();

                foreach (String k in trainData.Keys)
                {
                    rows.Add(trainData[k]);
                }

                Node <Patient> t = destree.BuildTree(rows);

                this.InitializeTree(t);

                dmC.LoadCSVTest();

                Dictionary <String, Patient> test = dmC.GetClassifiedPatients();

                List <String> classification = new List <string>();

                double correct = 0;
                double total   = 0;

                foreach (String k in test.Keys)
                {
                    String a = test[k].getAttributes()[test[k].getAttributes().Length - 1];
                    String b = destree.PrintLeaf(destree.Classify(test[k], t))[1];

                    if (a.Equals(b))
                    {
                        correct++;
                    }

                    total++;
                }

                double accurracy = (correct / total);

                this.accu.Text = "Accurracy: " + accurracy;

                this.addPatientControl2.SetRoot(t);
                this.addPatientControl2.SetTree(destree);
            }

            e.Graphics.SmoothingMode     = SmoothingMode.AntiAlias;
            e.Graphics.TextRenderingHint = TextRenderingHint.AntiAliasGridFit;
            root.DrawTree(e.Graphics);
        }
Пример #3
0
        public string Clasify(String[] info)
        {
            DataRow dr = table.NewRow();

            for (int i = 0; i < info.Length; i++)
            {
                dr[i] = info[i]; //carga los datos de cada columna para su respectiva fila
            }

            return(tree.Classify(dr));
        }
Пример #4
0
        private void TrainData_Click(object sender, EventArgs e)
        {
            dmC.LoadCSV();

            Dictionary <String, Dato> trainData = dmC.GetBanks();

            DecisionTree <Dato> destree = new DecisionTree <Dato>(trainData);

            List <Dato> rows = new List <Dato>();

            foreach (String k in trainData.Keys)
            {
                rows.Add(trainData[k]);
            }

            Node <Dato> t = destree.BuildTree(rows);

            //printTree(t, "");

            dmC.LoadCSVTest();

            Dictionary <String, Dato> test = dmC.GetClassifiedBank();

            List <String> classification = new List <string>();

            foreach (String k in test.Keys)
            {
                classification.Add("Actual -> " + test[k].getAttributes()[test[k].getAttributes().Length - 1] + "\n" +
                                   "Predicted -> " + destree.PrintLeaf(destree.Classify(test[k], t)));

                resultadosArbol.Add((test[k].getAttributes()[test[k].getAttributes().Length - 1] == 0 + "" ? "no" : "yes"));

                Console.WriteLine("Actual -> " + test[k].getAttributes()[test[k].getAttributes().Length - 1] + "\n" +
                                  "Predicted -> " + destree.PrintLeaf(destree.Classify(test[k], t)));
            }

            ResultClasification c = new ResultClasification(classification);

            // c.Show();
            Recorrer();
        }
        static void Main(string[] args)
        {
            // SOME BASIC EXAMPLES OF USING THIS LIBRARY

            // begin of data loading

            Datarow[] testdata = Datarow.GetDatarowsFromCSV(@"C:\Users\Marián Trpkoš\source\repos\DecisionTreeClassifier\DecisionTreeClassifierV2\testdata.csv");

            Datarow[] training = Datarow.GetDatarowsFromStringArray(new string[]
            {
                "Green;3;Apple",
                "Yellow;3;Apple",
                "Red;1;Grape",
                "Red;1;Grape",
                "Yellow;3;Lemon",
            });

            // end of data loading

            foreach (object val in DecisionTree.FindUniqueValues(testdata))
            {
                Console.WriteLine(val.ToString());                                                             // finding unique values in last column
            }
            Console.WriteLine("----------------");

            foreach (Tuple <object, int> tuple in DecisionTree.GetClassCounts(testdata))
            {
                Console.WriteLine($"{tuple.Item1.ToString()}: {tuple.Item2}");                                                                         // getting counts of unique values
            }
            Console.WriteLine("----------------");

            Tuple <Datarow[], Datarow[]> truefalse_rows = DecisionTree.Partition(testdata, new Question(1, testdata[1].values[1])); // partition data with one basic question - Is <something> orange?

            Console.WriteLine("TRUE: ");
            foreach (Datarow row in truefalse_rows.Item1)
            {
                Console.WriteLine(row.ToString());                                           // printing all true rows
            }
            Console.WriteLine("FALSE: ");
            foreach (Datarow row in truefalse_rows.Item2)
            {
                Console.WriteLine(row.ToString());                                           // printing all false rows
            }
            Console.WriteLine("----------------");

            Datarow[] lots_of_mixing = Datarow.GetDatarowsFromStringArray(new string[] { "Apple", "Orange", "Grape", "Grapefruit", "Blueberry" });
            Console.WriteLine(DecisionTree.Gini(lots_of_mixing)); // just a basic test of gini - value which tells how many different kinds of things there are (uncertainty)

            Console.WriteLine("----------------");

            double uncertainty = DecisionTree.Gini(training);                                                           // getting uncertainty for training dataset

            Console.WriteLine(uncertainty);                                                                             // pritning this uncertainty
            Tuple <Datarow[], Datarow[]> truefalse_training = DecisionTree.Partition(training, new Question(0, "Red")); // splitting data with question Is <something> red?

            Console.WriteLine(DecisionTree.InfoGain(truefalse_training.Item1, truefalse_training.Item2, uncertainty));  // getting info (numeric value) how efficient this question is (higher = better)

            Console.WriteLine("----------------");

            var bestdata = DecisionTree.FindBestQuestion(training); // finding best question to ask for training data

            Console.WriteLine(bestdata.Item1);                      // printing gain
            Console.WriteLine(bestdata.Item2.ToString());           // printing question

            Console.WriteLine("----------------");

            DecisionTree trainingDataTree = new DecisionTree(training); // creating decision tree classifier with training dataset

            trainingDataTree.BuildTree();                               // building tree

            trainingDataTree.PrintTree();                               // tree visualized

            Console.WriteLine();                                        // spacing lel

            // classifying data
            Console.WriteLine((trainingDataTree.Classify(new Datarow("Yellow;5")).ToString())); // should output: can be both apple and lemon
            Console.WriteLine((trainingDataTree.Classify(new Datarow("Red;2")).ToString()));    // should output: can be only grape
            Console.WriteLine((trainingDataTree.Classify(new Datarow("Green;10")).ToString())); // should ouput: can be only apple

            // --> save tree to .dat file           trainingDataTree.SaveToDat(path);
            // --> load tree from .dat file         DecisionTree trainingDataTree = DecisionTree.ReadFromDat(path);

            Console.ReadKey();
        }
Пример #6
0
        public Tuple <double, double, double, double> TrainTree(double percent)
        {
            DataTable copy            = new DataTable();
            DataTable copylibrary     = new DataTable();
            DataTable training        = new DataTable();
            DataTable traininglibrary = new DataTable();

            for (int i = 0; i < 33; i++)
            {
                string header = Convert.ToString(table.Columns[i].ColumnName);
                if (i == 2 || i == 6 || i == 7 || (i >= 12 && i <= 14) || i >= 23)
                {
                    copylibrary.Columns.Add(header, typeof(double));
                    traininglibrary.Columns.Add(header, typeof(double));
                }
                else
                {
                    copylibrary.Columns.Add(header, typeof(string));
                    traininglibrary.Columns.Add(header, typeof(string));
                }
                copy.Columns.Add(header);
                training.Columns.Add(header);
            }


            foreach (DataRow dr in table.Rows)
            {
                copy.Rows.Add(dr.ItemArray);
            }

            foreach (DataRow dr in tableTwo.Rows)
            {
                copylibrary.Rows.Add(dr.ItemArray);
            }


            Random a = new Random();

            for (int i = 0; i < table.Rows.Count * percent; i++)
            {
                int randmNum = a.Next(0, copy.Rows.Count);

                training.Rows.Add(copy.Rows[randmNum].ItemArray);
                traininglibrary.Rows.Add(copylibrary.Rows[randmNum].ItemArray);


                copy.Rows[randmNum].Delete();
                copylibrary.Rows[randmNum].Delete();
            }

            tree = new DecisionTree(training);
            tree.BuildTree();

            double correct = 0;

            var sw = new Stopwatch();

            sw.Start();
            foreach (DataRow dr in copy.Rows)
            {
                string classification = tree.Classify(dr);

                if (classification.Equals(dr[32]))
                {
                    correct++;
                }
            }

            sw.Stop();
            double timeManualTree = sw.ElapsedMilliseconds;
            double impPercent     = correct / Convert.ToDouble(copy.Rows.Count);

            //entrenamiento del segundo arbol
            treeLibrary.TrainTree(traininglibrary);

            sw = new Stopwatch();
            sw.Start();
            double libPercent = treeLibrary.Test(copylibrary);

            sw.Stop();
            double timeLibraryTree = sw.ElapsedMilliseconds;

            Tuple <double, double, double, double> percents = new Tuple <double, double, double, double>(impPercent, libPercent, timeManualTree, timeLibraryTree);

            return(percents);
        }