public void Dispose() { if (_cuda != null) { //if (_hasAllocatedFrame == true) //{ // FreeAllocatedFrame(); //} //+ _cuda.DestroyEvent(_cudaStartEvent); _cuda.DestroyEvent(_cudaStopEvent); _cuda = null; } }
static void Main(string[] args) { // Create a new instance of CUDA class, select 1st device. CUDA cuda = new CUDA(0, true); // Prepare parameters. int n = 16 * 1024 * 1024; uint nbytes = (uint)(n * sizeof(int)); int value = 26; // allocate host memory int[] a = new int[n]; // allocate device memory CUdeviceptr d_a = cuda.Allocate<int>(a); CUDADriver.cuMemsetD8(d_a, 0xff, nbytes); // load module cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "asyncAPI.ptx")); CUfunction func = cuda.GetModuleFunction("increment_kernel"); // set kernel launch configuration cuda.SetFunctionBlockShape(func, 512, 1, 1); // create cuda event handles CUevent start = cuda.CreateEvent(); CUevent stop = cuda.CreateEvent(); // asynchronously issue work to the GPU (all to stream 0) CUstream stream = new CUstream(); cuda.RecordEvent(start); cuda.CopyHostToDeviceAsync<int>(d_a, a, stream); // set parameters for kernel function cuda.SetParameter(func, 0, (uint)d_a.Pointer); cuda.SetParameter(func, IntPtr.Size, (uint)value); cuda.SetParameterSize(func, (uint)(IntPtr.Size + 4)); // actually launch kernel cuda.LaunchAsync(func, n / 512, 1, stream); // wait for every thing to finish, then start copy back data cuda.CopyDeviceToHostAsync<int>(d_a, a, stream); cuda.RecordEvent(stop); // print the cpu and gpu times Console.WriteLine("time spent executing by the GPU: {0} ms", cuda.ElapsedTime(start, stop)); // check the output for correctness if (CorrectOutput(a, value)) Console.WriteLine("Test PASSED"); else Console.WriteLine("Test FAILED"); // release resources cuda.DestroyEvent(start); cuda.DestroyEvent(stop); cuda.Free(d_a); }
/// <summary> /// implementation of sparese matrix product /// </summary> /// <param name="repetition">how many times kernel should be launch</param> /// <param name="moduleFunction">cuda kenrel name</param> /// <param name="blockSizeX">block size X</param> /// <param name="blockSizeY">block size Y</param> /// <param name="transposeGrid">indicate that grid dimensions should be /// computed alternativly, if false than gridDimY- connected with rows /// else gridDim.Y conected with cols</param> /// <returns></returns> public static float[] CRSSparseMM(int repetition, string moduleFunction, int blockSizeX, int blockSizeY, bool transposeGrid) { //int blockSizeX = 4; //int blockSizeY = 4; CUDA cuda = new CUDA(0, true); // load module CUmodule module = cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "matrixKernels.cubin")); CUfunction cuFunc = cuda.GetModuleFunction(moduleFunction); int maxRowSize = avgElements + stdElements - 1; Console.WriteLine("------------------------------------"); Console.WriteLine("init Matrix"); Stopwatch t = Stopwatch.StartNew(); //values in CRS format float[] AVals, BVals; //indexes in Crs format int[] AIdx, BIdx; //Lenght of each row in CRS format int[] ARowLen, BRowLen; int maxIndex = 0; MakeRandCrsSparseMatrix(Rows, maxRowSize, out AVals, out AIdx, out ARowLen, out maxIndex); // DisplayCrsMatrix(AVals, AIdx, ARowLen,maxIndex); MakeRandCrsSparseMatrix(Cols, maxRowSize, out BVals, out BIdx, out BRowLen, out maxIndex); //DisplayCrsMatrix(BVals, BIdx, BRowLen, maxIndex); Console.WriteLine("Init takes {0}", t.Elapsed); t.Start(); CUdeviceptr AValsPtr = cuda.CopyHostToDevice(AVals); CUdeviceptr AIdxPtr = cuda.CopyHostToDevice(AIdx); CUdeviceptr ALenghtPtr = cuda.CopyHostToDevice(ARowLen); CUdeviceptr BValsPtr = cuda.CopyHostToDevice(BVals); CUdeviceptr BIdxPtr = cuda.CopyHostToDevice(BIdx); CUdeviceptr BLenghtPtr = cuda.CopyHostToDevice(BRowLen); int outputSize = Rows * Cols; float[] output = new float[outputSize]; //CUdeviceptr dOutput = cuda.Allocate(output); IntPtr outputPtr2 = cuda.HostAllocate((uint)(outputSize * sizeof(float)), CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); CUdeviceptr dOutput = cuda.GetHostDevicePointer(outputPtr2, 0); Console.WriteLine("copy to device takes {0}", t.Elapsed); #region set cuda parameters int Aelements = AVals.Length; int Belements = BVals.Length; cuda.SetFunctionBlockShape(cuFunc, blockSizeX, blockSizeY, 1); int offset = 0; cuda.SetParameter(cuFunc, offset, AValsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, AIdxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, ALenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, BValsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, BIdxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, BLenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, dOutput.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, (uint)Rows); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Cols); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Aelements); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Belements); offset += sizeof(int); cuda.SetParameterSize(cuFunc, (uint)offset); #endregion Console.WriteLine("start computation"); CUevent start = cuda.CreateEvent(); CUevent end = cuda.CreateEvent(); //CUtexref cuTexRef = cuda.GetModuleTexture(module, "texRef"); //cuda.SetTextureFlags(cuTexRef, 0); int gridDimX = (int)Math.Ceiling((Cols + 0.0) / (blockSizeX)); int gridDimY = (int)Math.Ceiling((0.0 + Rows) / blockSizeY); if (transposeGrid) { gridDimX = (int)Math.Ceiling((Rows + 0.0) / (blockSizeX)); gridDimY = (int)Math.Ceiling((0.0 + Cols) / blockSizeY); } Stopwatch timer = Stopwatch.StartNew(); cuda.RecordEvent(start); for (int k = 0; k < repetition; k++) { cuda.Launch(cuFunc, gridDimX, gridDimY); cuda.SynchronizeContext(); // cuda.CopyDeviceToHost(dOutput, output); Marshal.Copy(outputPtr2, output, 0, outputSize); } cuda.RecordEvent(end); cuda.SynchronizeContext(); timer.Stop(); float cudaTime = cuda.ElapsedTime(start, end); Console.WriteLine("Matrix products with kernel {0}", moduleFunction); Console.WriteLine(" takes {0} ms stopwatch time {1} ms", cudaTime, timer.Elapsed); int lenght = displayCount;// Math.Min(displayCount, Rows); Console.WriteLine(); for (int i = 0; i < lenght; i++) { Console.WriteLine("{0}-{1}", i, output[i]); } cuda.Free(AValsPtr); cuda.Free(AIdxPtr); cuda.Free(ALenghtPtr); cuda.Free(BValsPtr); cuda.Free(BIdxPtr); cuda.Free(BLenghtPtr); cuda.Free(dOutput); cuda.DestroyEvent(start); cuda.DestroyEvent(end); return(output); }
public static float[] CRSSparseMMwithDenseVector(int repetition, string moduleFunction, int blockSizeX, int blockSizeY) { CUDA cuda = new CUDA(0, true); // load module CUmodule module = cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "matrixKernels.cubin")); CUfunction cuFunc = cuda.GetModuleFunction(moduleFunction); int maxRowSize = avgElements + stdElements - 1; Console.WriteLine("------------------------------------"); Console.WriteLine("init Matrix"); Stopwatch t = Stopwatch.StartNew(); //values in CRS format float[] AVals, BVals; //indexes in Crs format int[] AIdx, BIdx; //Lenght of each row in CRS format int[] ARowLen, BRowLen; int maxIndex = 0; MakeRandCrsSparseMatrix(Rows, maxRowSize, out AVals, out AIdx, out ARowLen, out maxIndex); // DisplayCrsMatrix(AVals, AIdx, ARowLen,maxIndex); MakeRandCrsSparseMatrix(Cols, maxRowSize, out BVals, out BIdx, out BRowLen, out maxIndex); //DisplayCrsMatrix(BVals, BIdx, BRowLen, maxIndex); Console.WriteLine("Init takes {0}", t.Elapsed); t.Start(); CUdeviceptr AValsPtr = cuda.CopyHostToDevice(AVals); CUdeviceptr AIdxPtr = cuda.CopyHostToDevice(AIdx); CUdeviceptr ALenghtPtr = cuda.CopyHostToDevice(ARowLen); int outputSize = Rows * Cols; float[] output = new float[outputSize]; //allocate memory for output IntPtr outputPtr2 = cuda.HostAllocate((uint)(outputSize * sizeof(float)), CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); CUdeviceptr dOutput = cuda.GetHostDevicePointer(outputPtr2, 0); //create dense vector for each column in B matrix float[] mainVec = new float[maxIndex + 1]; uint memSize = (uint)((maxIndex + 1) * sizeof(float)); CUstream stream0 = cuda.CreateStream(); IntPtr[] mainVecIntPtrs = new IntPtr[2]; //write combined memory allocation //IntPtr mainVecIPtr = cuda.HostAllocate(memSize,CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); //CUdeviceptr mainVecPtr=cuda.CopyHostToDeviceAsync(mainVecIPtr,memSize,stream0); // //mainVecIntPtrs[0] = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); //mainVecIntPtrs[1] = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); mainVecIntPtrs[0] = cuda.AllocateHost(memSize); mainVecIntPtrs[1] = cuda.AllocateHost(memSize); CUdeviceptr mainVecPtr = cuda.CopyHostToDeviceAsync(mainVecIntPtrs[0], memSize, stream0); //IntPtr mainVecIPtr = cuda.HostAllocate(memSize,CUDADriver.CU_MEMHOSTALLOC_PORTABLE); //CUdeviceptr mainVecPtr=cuda.CopyHostToDeviceAsync(mainVecIPtr,memSize,stream0); //mapped memory allocation //IntPtr mainVecIPtr = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); //CUdeviceptr mainVecPtr = cuda.CopyHostToDevice(mainVecIPtr, memSize); //get texture reference CUtexref cuTexRef = cuda.GetModuleTexture(module, "vectorTexRef"); cuda.SetTextureFlags(cuTexRef, 0); cuda.SetTextureAddress(cuTexRef, mainVecPtr, memSize); Console.WriteLine("copy to device takes {0}", t.Elapsed); #region set cuda parameters int Aelements = AVals.Length; cuda.SetFunctionBlockShape(cuFunc, blockSizeX, blockSizeY, 1); int offset = 0; cuda.SetParameter(cuFunc, offset, AValsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, AIdxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, ALenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, dOutput.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, (uint)Rows); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Cols); offset += sizeof(int); int colIndexParamOffset = offset; cuda.SetParameter(cuFunc, offset, (uint)0); offset += sizeof(int); cuda.SetParameterSize(cuFunc, (uint)offset); #endregion Console.WriteLine("start computation"); CUevent start = cuda.CreateEvent(); CUevent end = cuda.CreateEvent(); int gridDimX = (int)Math.Ceiling((Rows + 0.0) / (blockSizeX)); int gridDim = (Rows + blockSizeX - 1) / blockSizeX; Stopwatch timer = Stopwatch.StartNew(); cuda.RecordEvent(start); for (int rep = 0; rep < repetition; rep++) { for (int k = 0; k < Cols; k++) { Helpers.InitBuffer(BVals, BIdx, BRowLen, k, mainVecIntPtrs[k % 2]); cuda.SynchronizeStream(stream0); cuda.CopyHostToDeviceAsync(mainVecPtr, mainVecIntPtrs[k % 2], memSize, stream0); cuda.SetParameter(cuFunc, colIndexParamOffset, (uint)k); cuda.LaunchAsync(cuFunc, gridDimX, 1, stream0); //cuda.SynchronizeStream(stream0); ////clear host buffer Helpers.SetBufferIdx(BIdx, BRowLen, k - 1, mainVecIntPtrs[(k + 1) % 2], 0.0f); //Helpers.InitBuffer(BVals, BIdx, BRowLen, k, mainVecIPtr); ////make asynchronius copy and kernel lauch //cuda.CopyHostToDeviceAsync(mainVecPtr, mainVecIPtr, memSize, stream0); //cuda.SetParameter(cuFunc, colIndexParamOffset,(uint) k); //cuda.LaunchAsync(cuFunc, gridDimX, 1, stream0); //cuda.SynchronizeStream(stream0); ////clear host buffer //Helpers.SetBufferIdx(BIdx, BRowLen, k, mainVecIPtr, 0.0f); } } cuda.RecordEvent(end); cuda.SynchronizeContext(); timer.Stop(); float cudaTime = cuda.ElapsedTime(start, end); Marshal.Copy(outputPtr2, output, 0, outputSize); Console.WriteLine("Matrix products with kernel {0}", moduleFunction); Console.WriteLine(" takes {0} ms stopwatch time {1} ms", cudaTime, timer.Elapsed); int lenght = displayCount;// Math.Min(displayCount, Rows); Console.WriteLine(); for (int i = 0; i < lenght; i++) { Console.WriteLine("{0}-{1}", i, output[i]); } cuda.Free(AValsPtr); cuda.Free(AIdxPtr); cuda.Free(ALenghtPtr); cuda.Free(dOutput); cuda.DestroyEvent(start); cuda.DestroyEvent(end); cuda.DestroyStream(stream0); cuda.Free(mainVecPtr); cuda.DestroyTexture(cuTexRef); return(output); }
/// <summary> /// implementation of sparese matrix product /// </summary> /// <param name="repetition">how many times kernel should be launch</param> /// <param name="moduleFunction">cuda kenrel name</param> /// <param name="blockSizeX">block size X</param> /// <param name="blockSizeY">block size Y</param> /// <param name="transposeGrid">indicate that grid dimensions should be /// computed alternativly, if false than gridDimY- connected with rows /// else gridDim.Y conected with cols</param> /// <returns></returns> public static float[] CRSSparseMM(int repetition, string moduleFunction, int blockSizeX,int blockSizeY, bool transposeGrid) { //int blockSizeX = 4; //int blockSizeY = 4; CUDA cuda = new CUDA(0, true); // load module CUmodule module = cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "matrixKernels.cubin")); CUfunction cuFunc = cuda.GetModuleFunction(moduleFunction); int maxRowSize = avgElements + stdElements - 1; Console.WriteLine("------------------------------------"); Console.WriteLine("init Matrix"); Stopwatch t = Stopwatch.StartNew(); //values in CRS format float[] AVals, BVals; //indexes in Crs format int[] AIdx, BIdx; //Lenght of each row in CRS format int[] ARowLen, BRowLen; int maxIndex = 0; MakeRandCrsSparseMatrix(Rows, maxRowSize, out AVals, out AIdx, out ARowLen,out maxIndex); // DisplayCrsMatrix(AVals, AIdx, ARowLen,maxIndex); MakeRandCrsSparseMatrix(Cols, maxRowSize, out BVals, out BIdx, out BRowLen,out maxIndex); //DisplayCrsMatrix(BVals, BIdx, BRowLen, maxIndex); Console.WriteLine("Init takes {0}", t.Elapsed); t.Start(); CUdeviceptr AValsPtr = cuda.CopyHostToDevice(AVals); CUdeviceptr AIdxPtr = cuda.CopyHostToDevice(AIdx); CUdeviceptr ALenghtPtr = cuda.CopyHostToDevice(ARowLen); CUdeviceptr BValsPtr = cuda.CopyHostToDevice(BVals); CUdeviceptr BIdxPtr = cuda.CopyHostToDevice(BIdx); CUdeviceptr BLenghtPtr = cuda.CopyHostToDevice(BRowLen); int outputSize = Rows * Cols; float[] output = new float[outputSize]; //CUdeviceptr dOutput = cuda.Allocate(output); IntPtr outputPtr2 = cuda.HostAllocate((uint)(outputSize * sizeof(float)), CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); CUdeviceptr dOutput = cuda.GetHostDevicePointer(outputPtr2, 0); Console.WriteLine("copy to device takes {0}", t.Elapsed); #region set cuda parameters int Aelements = AVals.Length; int Belements = BVals.Length; cuda.SetFunctionBlockShape(cuFunc,blockSizeX,blockSizeY, 1); int offset = 0; cuda.SetParameter(cuFunc, offset, AValsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, AIdxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, ALenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, BValsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, BIdxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, BLenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, dOutput.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, (uint)Rows); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Cols); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Aelements); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Belements); offset += sizeof(int); cuda.SetParameterSize(cuFunc, (uint)offset); #endregion Console.WriteLine("start computation"); CUevent start = cuda.CreateEvent(); CUevent end = cuda.CreateEvent(); //CUtexref cuTexRef = cuda.GetModuleTexture(module, "texRef"); //cuda.SetTextureFlags(cuTexRef, 0); int gridDimX =(int) Math.Ceiling((Cols + 0.0) / (blockSizeX)); int gridDimY = (int)Math.Ceiling((0.0+Rows)/blockSizeY); if (transposeGrid) { gridDimX = (int)Math.Ceiling((Rows + 0.0) / (blockSizeX)); gridDimY = (int)Math.Ceiling((0.0 + Cols) / blockSizeY); } Stopwatch timer = Stopwatch.StartNew(); cuda.RecordEvent(start); for (int k = 0; k < repetition; k++) { cuda.Launch(cuFunc, gridDimX, gridDimY); cuda.SynchronizeContext(); // cuda.CopyDeviceToHost(dOutput, output); Marshal.Copy(outputPtr2, output, 0, outputSize); } cuda.RecordEvent(end); cuda.SynchronizeContext(); timer.Stop(); float cudaTime = cuda.ElapsedTime(start, end); Console.WriteLine("Matrix products with kernel {0}",moduleFunction); Console.WriteLine(" takes {0} ms stopwatch time {1} ms", cudaTime, timer.Elapsed); int lenght = displayCount;// Math.Min(displayCount, Rows); Console.WriteLine(); for (int i = 0; i < lenght; i++) { Console.WriteLine("{0}-{1}", i, output[i]); } cuda.Free(AValsPtr); cuda.Free(AIdxPtr); cuda.Free(ALenghtPtr); cuda.Free(BValsPtr); cuda.Free(BIdxPtr); cuda.Free(BLenghtPtr); cuda.Free(dOutput); cuda.DestroyEvent(start); cuda.DestroyEvent(end); return output; }
public static float[] CRSSparseMMwithDenseVector(int repetition, string moduleFunction, int blockSizeX, int blockSizeY) { CUDA cuda = new CUDA(0, true); // load module CUmodule module = cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "matrixKernels.cubin")); CUfunction cuFunc = cuda.GetModuleFunction(moduleFunction); int maxRowSize = avgElements + stdElements - 1; Console.WriteLine("------------------------------------"); Console.WriteLine("init Matrix"); Stopwatch t = Stopwatch.StartNew(); //values in CRS format float[] AVals, BVals; //indexes in Crs format int[] AIdx, BIdx; //Lenght of each row in CRS format int[] ARowLen, BRowLen; int maxIndex = 0; MakeRandCrsSparseMatrix(Rows, maxRowSize, out AVals, out AIdx, out ARowLen, out maxIndex); // DisplayCrsMatrix(AVals, AIdx, ARowLen,maxIndex); MakeRandCrsSparseMatrix(Cols, maxRowSize, out BVals, out BIdx, out BRowLen, out maxIndex); //DisplayCrsMatrix(BVals, BIdx, BRowLen, maxIndex); Console.WriteLine("Init takes {0}", t.Elapsed); t.Start(); CUdeviceptr AValsPtr = cuda.CopyHostToDevice(AVals); CUdeviceptr AIdxPtr = cuda.CopyHostToDevice(AIdx); CUdeviceptr ALenghtPtr = cuda.CopyHostToDevice(ARowLen); int outputSize = Rows * Cols; float[] output = new float[outputSize]; //allocate memory for output IntPtr outputPtr2 = cuda.HostAllocate((uint)(outputSize * sizeof(float)), CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); CUdeviceptr dOutput = cuda.GetHostDevicePointer(outputPtr2, 0); //create dense vector for each column in B matrix float[] mainVec = new float[maxIndex + 1]; uint memSize = (uint)((maxIndex + 1) * sizeof(float)); CUstream stream0 =cuda.CreateStream(); IntPtr[] mainVecIntPtrs= new IntPtr[2]; //write combined memory allocation //IntPtr mainVecIPtr = cuda.HostAllocate(memSize,CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); //CUdeviceptr mainVecPtr=cuda.CopyHostToDeviceAsync(mainVecIPtr,memSize,stream0); // //mainVecIntPtrs[0] = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); //mainVecIntPtrs[1] = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); mainVecIntPtrs[0] = cuda.AllocateHost(memSize); mainVecIntPtrs[1] = cuda.AllocateHost(memSize); CUdeviceptr mainVecPtr = cuda.CopyHostToDeviceAsync(mainVecIntPtrs[0], memSize, stream0); //IntPtr mainVecIPtr = cuda.HostAllocate(memSize,CUDADriver.CU_MEMHOSTALLOC_PORTABLE); //CUdeviceptr mainVecPtr=cuda.CopyHostToDeviceAsync(mainVecIPtr,memSize,stream0); //mapped memory allocation //IntPtr mainVecIPtr = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); //CUdeviceptr mainVecPtr = cuda.CopyHostToDevice(mainVecIPtr, memSize); //get texture reference CUtexref cuTexRef = cuda.GetModuleTexture(module, "vectorTexRef"); cuda.SetTextureFlags(cuTexRef, 0); cuda.SetTextureAddress(cuTexRef, mainVecPtr, memSize); Console.WriteLine("copy to device takes {0}", t.Elapsed); #region set cuda parameters int Aelements = AVals.Length; cuda.SetFunctionBlockShape(cuFunc, blockSizeX, blockSizeY, 1); int offset = 0; cuda.SetParameter(cuFunc, offset, AValsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, AIdxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, ALenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, dOutput.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, (uint)Rows); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Cols); offset += sizeof(int); int colIndexParamOffset = offset; cuda.SetParameter(cuFunc, offset, (uint)0); offset += sizeof(int); cuda.SetParameterSize(cuFunc, (uint)offset); #endregion Console.WriteLine("start computation"); CUevent start = cuda.CreateEvent(); CUevent end = cuda.CreateEvent(); int gridDimX = (int)Math.Ceiling((Rows + 0.0) / (blockSizeX)); int gridDim= (Rows + blockSizeX - 1) / blockSizeX; Stopwatch timer = Stopwatch.StartNew(); cuda.RecordEvent(start); for (int rep = 0; rep < repetition; rep++) { for (int k = 0; k < Cols; k++) { Helpers.InitBuffer(BVals, BIdx, BRowLen, k, mainVecIntPtrs[k % 2]); cuda.SynchronizeStream(stream0); cuda.CopyHostToDeviceAsync(mainVecPtr, mainVecIntPtrs[k % 2], memSize, stream0); cuda.SetParameter(cuFunc, colIndexParamOffset,(uint) k); cuda.LaunchAsync(cuFunc, gridDimX, 1, stream0); //cuda.SynchronizeStream(stream0); ////clear host buffer Helpers.SetBufferIdx(BIdx, BRowLen, k-1, mainVecIntPtrs[(k+1) % 2], 0.0f); //Helpers.InitBuffer(BVals, BIdx, BRowLen, k, mainVecIPtr); ////make asynchronius copy and kernel lauch //cuda.CopyHostToDeviceAsync(mainVecPtr, mainVecIPtr, memSize, stream0); //cuda.SetParameter(cuFunc, colIndexParamOffset,(uint) k); //cuda.LaunchAsync(cuFunc, gridDimX, 1, stream0); //cuda.SynchronizeStream(stream0); ////clear host buffer //Helpers.SetBufferIdx(BIdx, BRowLen, k, mainVecIPtr, 0.0f); } } cuda.RecordEvent(end); cuda.SynchronizeContext(); timer.Stop(); float cudaTime = cuda.ElapsedTime(start, end); Marshal.Copy(outputPtr2, output, 0, outputSize); Console.WriteLine("Matrix products with kernel {0}", moduleFunction); Console.WriteLine(" takes {0} ms stopwatch time {1} ms", cudaTime, timer.Elapsed); int lenght = displayCount;// Math.Min(displayCount, Rows); Console.WriteLine(); for (int i = 0; i < lenght; i++) { Console.WriteLine("{0}-{1}", i, output[i]); } cuda.Free(AValsPtr); cuda.Free(AIdxPtr); cuda.Free(ALenghtPtr); cuda.Free(dOutput); cuda.DestroyEvent(start); cuda.DestroyEvent(end); cuda.DestroyStream(stream0); cuda.Free(mainVecPtr); cuda.DestroyTexture(cuTexRef); return output; }
private static float[] CuRBFCSRCached() { //always the same values Random rnd = new Random(1); CUDA cuda = new CUDA(0, true); // load module CUmodule module = cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "structKernel.cubin")); CUfunction structPassFunc = cuda.GetModuleFunction("RBFspmv_csr_vector"); int maxRowSize = avgElements + stdElements - 1; Console.WriteLine("init arrays"); Stopwatch t = Stopwatch.StartNew(); List<float> vecValsL = new List<float>(N * maxRowSize / 2); List<int> vecIdxL = new List<int>(N * maxRowSize / 2); List<int> vecLenghtL = new List<int>(N); float[] vecVals; int[] vecIdx; int[] vecLenght; float[] selfDot = new float[N]; maxIndex = 0; int vecStartIdx = 0; for (int i = 0; i < N; i++) { int vecSize = avgElements + i % stdElements; float[] vals = Helpers.InitValues(i, vecSize, maxVal); vecValsL.AddRange(vals); for (int z = 0; z < vals.Length; z++) { selfDot[i] += vals[z] * vals[z]; } int[] index = Helpers.InitIndices(i, vecSize, ref maxIndex); vecIdxL.AddRange(index); vecLenghtL.Add(vecStartIdx); vecStartIdx += vecSize; } //for last index vecLenghtL.Add(vecStartIdx); vecVals = vecValsL.ToArray(); vecIdx = vecIdxL.ToArray(); vecLenght = vecLenghtL.ToArray(); float[] mainVec = new float[maxIndex + 1]; for (int j = vecLenght[mainIndex]; j < vecLenght[mainIndex + 1]; j++) { int idx = vecIdx[j]; float val = vecVals[j]; mainVec[idx] = val; } Console.WriteLine("Init takes {0}", t.Elapsed); t.Start(); CUdeviceptr valsPtr = cuda.CopyHostToDevice(vecVals); CUdeviceptr idxPtr = cuda.CopyHostToDevice(vecIdx); CUdeviceptr vecLenghtPtr = cuda.CopyHostToDevice(vecLenght); CUdeviceptr selfDotPtr = cuda.CopyHostToDevice(selfDot); //copy to texture CUarray cuArr = cuda.CreateArray(mainVec); cuda.CopyHostToArray(cuArr, mainVec, 0); CUtexref cuTexRef = cuda.GetModuleTexture(module, "texRef"); cuda.SetTextureFlags(cuTexRef, 0); cuda.SetTextureArray(cuTexRef, cuArr); float[] output = new float[N]; CUdeviceptr dOutput = cuda.Allocate(output); Console.WriteLine("copy to device takes {0}", t.Elapsed); cuda.SetFunctionBlockShape(structPassFunc, threadsPerBlock, 1, 1); int offset = 0; cuda.SetParameter(structPassFunc, offset, valsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(structPassFunc, offset, idxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(structPassFunc, offset, vecLenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(structPassFunc, offset, selfDotPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(structPassFunc, offset, dOutput.Pointer); offset += IntPtr.Size; cuda.SetParameter(structPassFunc, offset, (uint)N); offset += sizeof(int); cuda.SetParameter(structPassFunc, offset, (uint)mainIndex); offset += sizeof(int); cuda.SetParameter(structPassFunc, offset, Gamma); offset += sizeof(float); cuda.SetParameter(structPassFunc, offset, (uint)vecStartIdx); offset += sizeof(int); cuda.SetParameterSize(structPassFunc, (uint)offset); Console.WriteLine("start computation"); CUevent start = cuda.CreateEvent(); CUevent end = cuda.CreateEvent(); Stopwatch timer = Stopwatch.StartNew(); cuda.RecordEvent(start); cuda.Launch(structPassFunc, blocksPerGrid, 1); cuda.RecordEvent(end); cuda.SynchronizeContext(); //cuda.SynchronizeEvent(end); timer.Stop(); float naiveTime = cuda.ElapsedTime(start, end); Console.Write("csr vector Dot products with mainIndex {0} and {1}-vectors takes {2} ms stopwatch time {3} ms", mainIndex, N, naiveTime, timer.Elapsed); cuda.CopyDeviceToHost(dOutput, output); int lenght = Math.Min(displayCount, N); Console.WriteLine(); for (int i = 0; i < lenght; i++) { Console.WriteLine("{0}-{1}", i, output[i]); } cuda.Free(valsPtr); cuda.Free(idxPtr); cuda.Free(dOutput); cuda.Free(selfDotPtr); cuda.Free(vecLenghtPtr); cuda.DestroyArray(cuArr); cuda.DestroyTexture(cuTexRef); cuda.DestroyEvent(start); cuda.DestroyEvent(end); return output; }
//private static void InitMainVector(float[] vecVals, int[] vecIdx, int[] vecLenght, float[] mainVec) //{ // for (int j = vecLenght[mainIndex]; j < vecLenght[mainIndex + 1]; j++) // { // int idx = vecIdx[j]; // float val = vecVals[j]; // mainVec[idx] = val; // } //} private static float[] CuDotProdCSRwriteCombined(int repetition) { //always the same values Random rnd = new Random(1); CUDA cuda = new CUDA(0, true); // load module CUmodule module = cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "structKernel.cubin")); CUfunction cuFunc = cuda.GetModuleFunction("spmv_csr_vector_kernel_wc"); int maxRowSize = avgElements + stdElements - 1; Console.WriteLine("init arrays"); Stopwatch t = Stopwatch.StartNew(); //temp lists for values, indices and vecotr lenght List<float> vecValsL = new List<float>(N * maxRowSize / 2); List<int> vecIdxL = new List<int>(N * maxRowSize / 2); List<int> vecLenghtL = new List<int>(N); float[] vecVals; int[] vecIdx; int[] vecLenght; maxIndex = 0; int vecStartIdx = 0; for (int i = 0; i < N; i++) { int vecSize = avgElements + i % stdElements; float[] vals = Helpers.InitValues(i, vecSize, maxVal); vecValsL.AddRange(vals); int[] index = Helpers.InitIndices(i, vecSize, ref maxIndex); vecIdxL.AddRange(index); vecLenghtL.Add(vecStartIdx); vecStartIdx += vecSize; } //for last index vecLenghtL.Add(vecStartIdx); vecVals = vecValsL.ToArray(); vecIdx = vecIdxL.ToArray(); vecLenght = vecLenghtL.ToArray(); Console.WriteLine("Init takes {0}", t.Elapsed); t.Start(); CUdeviceptr valsPtr = cuda.CopyHostToDevice(vecVals); CUdeviceptr idxPtr = cuda.CopyHostToDevice(vecIdx); CUdeviceptr vecLenghtPtr = cuda.CopyHostToDevice(vecLenght); float[] output = new float[N]; //CUdeviceptr dOutput = cuda.Allocate(output); IntPtr outputPtr2 = cuda.HostAllocate((uint)(N * sizeof(float)), CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); CUdeviceptr dOutput = cuda.GetHostDevicePointer(outputPtr2, 0); uint memSize = (uint)((maxIndex + 1) * sizeof(float)); uint flags = CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP | CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED; uint tt = (uint)CUMemHostAllocFlags.WriteCombined; uint s = (uint)CUMemHostAllocFlags.DeviceMap; IntPtr mainVecIntPtr = cuda.HostAllocate(memSize, flags); CUdeviceptr mainVecPtr = cuda.GetHostDevicePointer(mainVecIntPtr, 0); Console.WriteLine("copy to device takes {0}", t.Elapsed); #region set cuda parameters cuda.SetFunctionBlockShape(cuFunc, threadsPerBlock, 1, 1); int offset = 0; cuda.SetParameter(cuFunc, offset, valsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, idxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, vecLenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, mainVecPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, dOutput.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, (uint)N); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)vecStartIdx); offset += sizeof(int); cuda.SetParameterSize(cuFunc, (uint)offset); #endregion Console.WriteLine("start computation"); CUevent start = cuda.CreateEvent(); CUevent end = cuda.CreateEvent(); mainIndex = StartingIndex; Stopwatch timer = Stopwatch.StartNew(); cuda.RecordEvent(start); for (int k = 0; k < repetition; k++) { //float[] tempFloatarr = new float[memSize]; Helpers.InitBuffer(vecVals, vecIdx, vecLenght,mainIndex, mainVecIntPtr); //Marshal.Copy(mainVecIntPtr, tempFloatarr, 0, tempFloatarr.Length); cuda.Launch(cuFunc, blocksPerGrid, 1); cuda.SynchronizeContext(); //cuda.CopyDeviceToHost(dOutput, output); Marshal.Copy(outputPtr2, output, 0, N); //mainVec = new float[maxIndex + 1]; //Array.Clear(mainVec, 0, mainVec.Length); //clear previous vector values Helpers.SetBufferIdx(vecIdx, vecLenght,mainIndex, mainVecIntPtr,0.0f); mainIndex++; } cuda.RecordEvent(end); cuda.SynchronizeContext(); //cuda.SynchronizeEvent(end); // cuda.CopyDeviceToHost(dOutput, output); timer.Stop(); float naiveTime = cuda.ElapsedTime(start, end); Console.Write("csr vector Dot products with mainIndex {0} and {1}-vectors takes {2} ms stopwatch time {3} ms", mainIndex, N, naiveTime, timer.Elapsed); int lenght = Math.Min(displayCount, N); Console.WriteLine(); for (int i = 0; i < lenght; i++) { Console.WriteLine("{0}-{1}", i, output[i]); } cuda.Free(valsPtr); cuda.Free(idxPtr); cuda.Free(dOutput); cuda.Free(vecLenghtPtr); //cuda.DestroyArray(cuArr); cuda.Free(mainVecPtr); //cuda.DestroyTexture(cuTexRef); // cuda.Free(mainVecPtr); cuda.DestroyEvent(start); cuda.DestroyEvent(end); return output; }
static void Main(string[] args) { // Create a new instance of CUDA class, select 1st device. CUDA cuda = new CUDA(0, true); // Prepare parameters. int n = 16 * 1024 * 1024; uint nbytes = (uint)(n * sizeof(int)); int value = 26; // allocate host memory int[] a = new int[n]; // allocate device memory CUdeviceptr d_a = cuda.Allocate <int>(a); CUDADriver.cuMemsetD8(d_a, 0xff, nbytes); // load module cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "asyncAPI.ptx")); CUfunction func = cuda.GetModuleFunction("increment_kernel"); // set kernel launch configuration cuda.SetFunctionBlockShape(func, 512, 1, 1); // create cuda event handles CUevent start = cuda.CreateEvent(); CUevent stop = cuda.CreateEvent(); // asynchronously issue work to the GPU (all to stream 0) CUstream stream = new CUstream(); cuda.RecordEvent(start); cuda.CopyHostToDeviceAsync <int>(d_a, a, stream); // set parameters for kernel function cuda.SetParameter(func, 0, (uint)d_a.Pointer); cuda.SetParameter(func, IntPtr.Size, (uint)value); cuda.SetParameterSize(func, (uint)(IntPtr.Size + 4)); // actually launch kernel cuda.LaunchAsync(func, n / 512, 1, stream); // wait for every thing to finish, then start copy back data cuda.CopyDeviceToHostAsync <int>(d_a, a, stream); cuda.RecordEvent(stop); // print the cpu and gpu times Console.WriteLine("time spent executing by the GPU: {0} ms", cuda.ElapsedTime(start, stop)); // check the output for correctness if (CorrectOutput(a, value)) { Console.WriteLine("Test PASSED"); } else { Console.WriteLine("Test FAILED"); } // release resources cuda.DestroyEvent(start); cuda.DestroyEvent(stop); cuda.Free(d_a); }