Exemplo n.º 1
0
        private double HeuristicEval(BoardStates player, OthelloGame game)
        {
            //Based of features of the board that humans have identified.
            //Hints of evaluation from any source I could find
            //idealy these could me optimized using a genetic algorithm,
            //but that is a different project


            const int searchableDepthOverride = 2; //override min-max in favor of complete evaluation
            const int endGame = 20;                //<20 moves is endgame
            const int midGame = 40;                // 20 moves in is midgame


            double value = 0;
            int    empty = game.GetPieceCount(BoardStates.empty);


            if (game.GameComplete)
            {
                return(CompleteEval(player, game));
            }
            else if (empty < searchableDepthOverride)
            {
                return(MinimaxAlphaBeta(game, searchableDepthOverride, int.MinValue, int.MaxValue, player));
            }

            value += coinDiffWeight * Math.Pow((game.GetPieceCount(player) - game.GetPieceCount(~player) + empty - coinDiffOffset), coinDiffPower);
            value += cornerDiffWeight * Math.Pow((game.GetCornerCount(player) - game.GetCornerCount(~player) + empty - cornerDiffOffset), cornerDiffPower);
            value += nearCornerDiffWeight * Math.Pow((game.GetAdjCornerCount(player) - game.GetAdjCornerCount(~player) + empty - nearCornerDiffOffset), nearCornerDiffPower);
            value += avalibleMoveDiffWeight * Math.Pow((game.GetPossiblePlayList(player).Count() - game.GetPossiblePlayList(~player).Count() + empty - avalibleMoveDiffOffset), avalibleMoveDiffPower);
            value += nonTurnableCoinDiffWeight * Math.Pow((game.GetSafePeiceCountEstimation(player) - game.GetSafePeiceCountEstimation(~player) + empty - nonTurnableCoinDiffOffset), nonTurnableCoinDiffPower);
            value += ControlledCornerDiffWeight * Math.Pow((game.GetControlledCorners(player) - game.GetControlledCorners(~player) + empty - ControlledCornerDiffOffset), ControlledCornerDiffPower);
            return(value);
        }
Exemplo n.º 2
0
        private byte[] PredictBestMove(int depth, OthelloGame game, BoardStates player)
        {
            byte[]        bestMove = new byte[] { byte.MaxValue, byte.MaxValue };
            List <byte[]> moves    = game.GetPossiblePlayList();

            double bestScore = int.MinValue + 1;

            if (game.GetPieceCount(BoardStates.empty) > 58)//first two moves, don't compute
            {
                return(OpeningMove(player, game));
            }
            else if (moves.Count == 1) //don't compute if there is only 1 move
            {
                return(moves[0]);
            }

            foreach (byte[] move in moves)
            {
                OthelloGame testGame = game.DeepCopy();
                testGame.MakeMove(move);
                double thisScore = MinimaxAlphaBeta(testGame, depth - 1, double.MinValue, double.MaxValue, player);
                if (thisScore > bestScore)
                {
                    bestScore = thisScore;
                    bestMove  = move;
                }
            }
            return(bestMove);
        }
Exemplo n.º 3
0
        private static byte[] OpeningMove(BoardStates player, OthelloGame game)
        {//avoid computation for first move - only one symmetric option
         //randomly select perpendicular or diagonal for second move - parallel
         //has been shown to be much worse
         //SPECIFIC TO 8x8 BOARDS
            byte[][] firstMoves = new byte[4][] {
                new byte[] { 2, 3 },
                new byte[] { 3, 2 },
                new byte[] { 4, 5 },
                new byte[] { 5, 4 }
            };

            if (game.GetPieceCount(BoardStates.empty) == 60)
            {
                Random rndGen = new Random();
                int    rand   = (int)Math.Ceiling(rndGen.NextDouble() * 4);
                switch (rand)
                {
                case 1:
                    return(firstMoves[0]);

                case 2:
                    return(firstMoves[1]);

                case 3:
                    return(firstMoves[2]);

                case 4:
                    return(firstMoves[3]);

                default:
                    throw new Exception("OpeningMove has faulted with random number generation");
                }
            }
            if (game.GetPieceCount(BoardStates.empty) == 59)
            {
                List <byte[]> moves  = game.GetPossiblePlayList();
                Random        rndGen = new Random();
                byte          rand   = (byte)Math.Ceiling(rndGen.NextDouble() * 2);
                switch (rand)
                {
                case 1:     //diagonal
                    return(moves[0]);

                case 2:     //perpendicular
                    return(moves[0]);

                default:
                    throw new Exception("Opening move has faulted with random number generation");
                }
            }
            return(new byte[] { byte.MaxValue, byte.MaxValue });
        }
Exemplo n.º 4
0
        private double MinimaxAlphaBeta(OthelloGame board, int depth, double a, double b, BoardStates player)// bool isMaxPlayer)
        {
            // The heart of our AI. Minimax algorithm with alpha-beta pruning to speed up computation.
            // Higher search depths = greater difficulty.
            //from oliverzh200/reversi https://github.com/oliverzh2000/reversi

            if (depth == 0 || board.GameComplete)
            {
                return(HeuristicEval(player, board));
            }
            double        bestScore  = double.MinValue;
            List <byte[]> validMoves = board.GetPossiblePlayList();

            if (validMoves.Count > 0)
            {
                foreach (byte[] move in validMoves)
                {
                    OthelloGame childBoard = board.DeepCopy();
                    childBoard.MakeMove(move);
                    double nodeScore = MinimaxAlphaBeta(childBoard, depth - 1, a, b, player);

                    bestScore = Math.Max(bestScore, nodeScore);
                    a         = Math.Max(bestScore, a);

                    if (b <= a) //Prune
                    {
                        break;
                    }
                }
            }
            else
            {
                return(MinimaxAlphaBeta(board, depth, a, b, player));
            }
            return(bestScore);
        }
Exemplo n.º 5
0
        private byte[] PredictBestMove(int depth, OthelloGame game, BoardStates player)
        {
            byte[]        bestMove = new byte[] { byte.MaxValue, byte.MaxValue };
            List <byte[]> moves    = game.GetPossiblePlayList();

            double bestScore = int.MinValue + 1;

            foreach (byte[] move in moves)
            {
                OthelloGame testGame = game.DeepCopy();
                testGame.MakeMove(move);
                double thisScore = MinimaxAlphaBeta(testGame, depth - 1, double.MinValue, double.MaxValue, player);
                if (thisScore > bestScore)
                {
                    bestScore = thisScore;
                    bestMove  = move;
                }
            }
            if ((bestMove[0] == byte.MaxValue || bestMove[1] == byte.MaxValue) && moves.Count > 0)
            {//All moves are valued at -inf, return one of em
                return(moves[0]);
            }
            return(bestMove);
        }