Exemplo n.º 1
0
        /// <summary>
        /// Searches for the node the agent is inside.
        /// This will also clamp the position to the navmesh
        /// and repair the funnel cooridor if the agent moves slightly outside it.
        ///
        /// Returns: True if nodes along the path have been destroyed so that a path recalculation is required
        /// </summary>
        bool ClampToNavmeshInternal(ref Vector3 position)
        {
            var previousNode = nodes[currentNode];

            if (previousNode.Destroyed)
            {
                return(true);
            }

            // Check if we are in the same node as we were in during the last frame and otherwise do a more extensive search
            if (previousNode.ContainsPoint(position))
            {
                return(false);
            }

            // This part of the code is relatively seldom called
            // Most of the time we are still on the same node as during the previous frame

            var que        = navmeshClampQueue;
            var allVisited = navmeshClampList;
            var parent     = navmeshClampDict;

            previousNode.TemporaryFlag1 = true;
            parent[previousNode]        = null;
            que.Enqueue(previousNode);
            allVisited.Add(previousNode);

            float            bestDistance = float.PositiveInfinity;
            Vector3          bestPoint    = position;
            TriangleMeshNode bestNode     = null;

            while (que.Count > 0)
            {
                var node = que.Dequeue();

                // Snap to the closest point in XZ space (keep the Y coordinate)
                // If we would have snapped to the closest point in 3D space, the agent
                // might slow down when traversing slopes
                var closest = node.ClosestPointOnNodeXZ(position);
                var dist    = VectorMath.MagnitudeXZ(closest - position);

                // Check if this node is any closer than the previous best node.
                // Allow for a small margin to both avoid floating point errors and to allow
                // moving past very small local minima.
                if (dist <= bestDistance * 1.05f + 0.001f)
                {
                    if (dist < bestDistance)
                    {
                        bestDistance = dist;
                        bestPoint    = closest;
                        bestNode     = node;
                    }

                    for (int i = 0; i < node.connections.Length; i++)
                    {
                        var neighbour = node.connections[i].node as TriangleMeshNode;
                        if (neighbour != null && !neighbour.TemporaryFlag1)
                        {
                            neighbour.TemporaryFlag1 = true;
                            parent[neighbour]        = node;
                            que.Enqueue(neighbour);
                            allVisited.Add(neighbour);
                        }
                    }
                }
            }

            for (int i = 0; i < allVisited.Count; i++)
            {
                allVisited[i].TemporaryFlag1 = false;
            }
            allVisited.ClearFast();

            var closestNodeInPath = nodes.IndexOf(bestNode);

            // Move the x and z coordinates of the chararacter but not the y coordinate
            // because the navmesh surface may not line up with the ground
            position.x = bestPoint.x;
            position.z = bestPoint.z;

            // Check if the closest node
            // was on the path already or if we need to adjust it
            if (closestNodeInPath == -1)
            {
                // Reuse this list, because why not.
                var prefix = navmeshClampList;

                while (closestNodeInPath == -1)
                {
                    prefix.Add(bestNode);
                    bestNode          = parent[bestNode];
                    closestNodeInPath = nodes.IndexOf(bestNode);
                }

                // We have found a node containing the position, but it is outside the funnel
                // Recalculate the funnel to include this node
                exactStart = position;
                UpdateFunnelCorridor(closestNodeInPath, prefix);

                prefix.ClearFast();

                // Restart from the first node in the updated path
                currentNode = 0;
            }
            else
            {
                currentNode = closestNodeInPath;
            }

            parent.Clear();
            // Do a quick check to see if the next node in the path has been destroyed
            // If that is the case then we should plan a new path immediately
            return(currentNode + 1 < nodes.Count && nodes[currentNode + 1].Destroyed);
        }
Exemplo n.º 2
0
        // Token: 0x060021AA RID: 8618 RVA: 0x0018F7E4 File Offset: 0x0018D9E4
        private bool ClampToNavmeshInternal(ref Vector3 position)
        {
            TriangleMeshNode triangleMeshNode = this.nodes[this.currentNode];

            if (triangleMeshNode.Destroyed)
            {
                return(true);
            }
            if (triangleMeshNode.ContainsPoint(position))
            {
                return(false);
            }
            Queue <TriangleMeshNode> queue = RichFunnel.navmeshClampQueue;
            List <TriangleMeshNode>  list  = RichFunnel.navmeshClampList;
            Dictionary <TriangleMeshNode, TriangleMeshNode> dictionary = RichFunnel.navmeshClampDict;

            triangleMeshNode.TemporaryFlag1 = true;
            dictionary[triangleMeshNode]    = null;
            queue.Enqueue(triangleMeshNode);
            list.Add(triangleMeshNode);
            float            num               = float.PositiveInfinity;
            Vector3          vector            = position;
            TriangleMeshNode triangleMeshNode2 = null;

            while (queue.Count > 0)
            {
                TriangleMeshNode triangleMeshNode3 = queue.Dequeue();
                Vector3          vector2           = triangleMeshNode3.ClosestPointOnNodeXZ(position);
                float            num2 = VectorMath.MagnitudeXZ(vector2 - position);
                if (num2 <= num * 1.05f + 0.001f)
                {
                    if (num2 < num)
                    {
                        num               = num2;
                        vector            = vector2;
                        triangleMeshNode2 = triangleMeshNode3;
                    }
                    for (int i = 0; i < triangleMeshNode3.connections.Length; i++)
                    {
                        TriangleMeshNode triangleMeshNode4 = triangleMeshNode3.connections[i].node as TriangleMeshNode;
                        if (triangleMeshNode4 != null && !triangleMeshNode4.TemporaryFlag1)
                        {
                            triangleMeshNode4.TemporaryFlag1 = true;
                            dictionary[triangleMeshNode4]    = triangleMeshNode3;
                            queue.Enqueue(triangleMeshNode4);
                            list.Add(triangleMeshNode4);
                        }
                    }
                }
            }
            for (int j = 0; j < list.Count; j++)
            {
                list[j].TemporaryFlag1 = false;
            }
            list.ClearFast <TriangleMeshNode>();
            int num3 = this.nodes.IndexOf(triangleMeshNode2);

            position.x = vector.x;
            position.z = vector.z;
            if (num3 == -1)
            {
                List <TriangleMeshNode> list2 = RichFunnel.navmeshClampList;
                while (num3 == -1)
                {
                    list2.Add(triangleMeshNode2);
                    triangleMeshNode2 = dictionary[triangleMeshNode2];
                    num3 = this.nodes.IndexOf(triangleMeshNode2);
                }
                this.exactStart = position;
                this.UpdateFunnelCorridor(num3, list2);
                list2.ClearFast <TriangleMeshNode>();
                this.currentNode = 0;
            }
            else
            {
                this.currentNode = num3;
            }
            dictionary.Clear();
            return(this.currentNode + 1 < this.nodes.Count && this.nodes[this.currentNode + 1].Destroyed);
        }
Exemplo n.º 3
0
 protected virtual void Update()
 {
     RichAI.deltaTime = Mathf.Min(Time.smoothDeltaTime * 2f, Time.deltaTime);
     if (this.rp != null)
     {
         RichPathPart currentPart = this.rp.GetCurrentPart();
         RichFunnel   richFunnel  = currentPart as RichFunnel;
         if (richFunnel != null)
         {
             Vector3 vector = this.UpdateTarget(richFunnel);
             if (Time.frameCount % 5 == 0 && this.wallForce > 0f && this.wallDist > 0f)
             {
                 this.wallBuffer.Clear();
                 richFunnel.FindWalls(this.wallBuffer, this.wallDist);
             }
             int     num     = 0;
             Vector3 vector2 = this.nextCorners[num];
             Vector3 vector3 = vector2 - vector;
             vector3.y = 0f;
             bool flag = Vector3.Dot(vector3, this.currentTargetDirection) < 0f;
             if (flag && this.nextCorners.Count - num > 1)
             {
                 num++;
                 vector2 = this.nextCorners[num];
             }
             if (vector2 != this.lastTargetPoint)
             {
                 this.currentTargetDirection   = vector2 - vector;
                 this.currentTargetDirection.y = 0f;
                 this.currentTargetDirection.Normalize();
                 this.lastTargetPoint = vector2;
             }
             vector3   = vector2 - vector;
             vector3.y = 0f;
             Vector3 vector4 = VectorMath.Normalize(vector3, out this.distanceToWaypoint);
             bool    flag2   = this.lastCorner && this.nextCorners.Count - num == 1;
             if (flag2 && this.distanceToWaypoint < 0.01f * this.maxSpeed)
             {
                 this.velocity = (vector2 - vector) * 100f;
             }
             else
             {
                 Vector3 a = this.CalculateWallForce(vector, vector4);
                 Vector2 vector5;
                 if (flag2)
                 {
                     vector5 = this.CalculateAccelerationToReachPoint(RichAI.To2D(vector2 - vector), Vector2.zero, RichAI.To2D(this.velocity));
                     a      *= Math.Min(this.distanceToWaypoint / 0.5f, 1f);
                     if (this.distanceToWaypoint < this.endReachedDistance)
                     {
                         this.NextPart();
                     }
                 }
                 else
                 {
                     Vector3 a2 = (num >= this.nextCorners.Count - 1) ? ((vector2 - vector) * 2f + vector) : this.nextCorners[num + 1];
                     Vector3 v  = (a2 - vector2).normalized * this.maxSpeed;
                     vector5 = this.CalculateAccelerationToReachPoint(RichAI.To2D(vector2 - vector), RichAI.To2D(v), RichAI.To2D(this.velocity));
                 }
                 this.velocity += (new Vector3(vector5.x, 0f, vector5.y) + a * this.wallForce) * RichAI.deltaTime;
             }
             TriangleMeshNode currentNode = richFunnel.CurrentNode;
             Vector3          b;
             if (currentNode != null)
             {
                 b = currentNode.ClosestPointOnNode(vector);
             }
             else
             {
                 b = vector;
             }
             float magnitude = (richFunnel.exactEnd - b).magnitude;
             float num2      = this.maxSpeed;
             num2 *= Mathf.Sqrt(Mathf.Min(1f, magnitude / (this.maxSpeed * this.slowdownTime)));
             if (this.slowWhenNotFacingTarget)
             {
                 float num3 = Mathf.Max((Vector3.Dot(vector4, this.tr.forward) + 0.5f) / 1.5f, 0.2f);
                 num2 *= num3;
                 float num4 = VectorMath.MagnitudeXZ(this.velocity);
                 float y    = this.velocity.y;
                 this.velocity.y = 0f;
                 num4            = Mathf.Min(num4, num2);
                 this.velocity   = Vector3.Lerp(this.velocity.normalized * num4, this.tr.forward * num4, Mathf.Clamp((!flag2) ? 1f : (this.distanceToWaypoint * 2f), 0f, 0.5f));
                 this.velocity.y = y;
             }
             else
             {
                 this.velocity = VectorMath.ClampMagnitudeXZ(this.velocity, num2);
             }
             this.velocity += RichAI.deltaTime * this.gravity;
             if (this.rvoController != null && this.rvoController.enabled)
             {
                 Vector3 pos = vector + VectorMath.ClampMagnitudeXZ(this.velocity, magnitude);
                 this.rvoController.SetTarget(pos, VectorMath.MagnitudeXZ(this.velocity), this.maxSpeed);
             }
             Vector3 vector6;
             if (this.rvoController != null && this.rvoController.enabled)
             {
                 vector6   = this.rvoController.CalculateMovementDelta(vector, RichAI.deltaTime);
                 vector6.y = this.velocity.y * RichAI.deltaTime;
             }
             else
             {
                 vector6 = this.velocity * RichAI.deltaTime;
             }
             if (flag2)
             {
                 Vector3 trotdir = Vector3.Lerp(vector6.normalized, this.currentTargetDirection, Math.Max(1f - this.distanceToWaypoint * 2f, 0f));
                 this.RotateTowards(trotdir);
             }
             else
             {
                 this.RotateTowards(vector6);
             }
             if (this.controller != null && this.controller.enabled)
             {
                 this.tr.position = vector;
                 this.controller.Move(vector6);
                 vector = this.tr.position;
             }
             else
             {
                 float y2 = vector.y;
                 vector += vector6;
                 vector  = this.RaycastPosition(vector, y2);
             }
             Vector3 vector7 = richFunnel.ClampToNavmesh(vector);
             if (vector != vector7)
             {
                 Vector3 vector8 = vector7 - vector;
                 this.velocity -= vector8 * Vector3.Dot(vector8, this.velocity) / vector8.sqrMagnitude;
                 if (this.rvoController != null && this.rvoController.enabled)
                 {
                     this.rvoController.SetCollisionNormal(vector8);
                 }
             }
             this.tr.position = vector7;
         }
         else if (this.rvoController != null && this.rvoController.enabled)
         {
             this.rvoController.Move(Vector3.zero);
         }
         if (currentPart is RichSpecial && !this.traversingSpecialPath)
         {
             base.StartCoroutine(this.TraverseSpecial(currentPart as RichSpecial));
         }
     }
     else if (this.rvoController != null && this.rvoController.enabled)
     {
         this.rvoController.Move(Vector3.zero);
     }
     else if (!(this.controller != null) || !this.controller.enabled)
     {
         this.tr.position = this.RaycastPosition(this.tr.position, this.tr.position.y);
     }
 }
Exemplo n.º 4
0
        /** Update is called once per frame */
        protected virtual void Update()
        {
            deltaTime = Mathf.Min(Time.smoothDeltaTime * 2, Time.deltaTime);

            if (rp != null)
            {
                RichPathPart currentPart = rp.GetCurrentPart();
                var          fn          = currentPart as RichFunnel;
                if (fn != null)
                {
                    // Clamp the current position to the navmesh
                    // and update the list of upcoming corners in the path
                    // and store that in the 'nextCorners' variable
                    Vector3 position = UpdateTarget(fn);

                    // Only get walls every 5th frame to save on performance
                    if (Time.frameCount % 5 == 0 && wallForce > 0 && wallDist > 0)
                    {
                        wallBuffer.Clear();
                        fn.FindWalls(wallBuffer, wallDist);
                    }

                    // Target point
                    int     tgIndex     = 0;
                    Vector3 targetPoint = nextCorners[tgIndex];
                    Vector3 dir         = targetPoint - position;
                    dir.y = 0;

                    bool passedTarget = Vector3.Dot(dir, currentTargetDirection) < 0;
                    // Check if passed target in another way
                    if (passedTarget && nextCorners.Count - tgIndex > 1)
                    {
                        tgIndex++;
                        targetPoint = nextCorners[tgIndex];
                    }

                    // Check if the target point changed compared to last frame
                    if (targetPoint != lastTargetPoint)
                    {
                        currentTargetDirection   = targetPoint - position;
                        currentTargetDirection.y = 0;
                        currentTargetDirection.Normalize();
                        lastTargetPoint = targetPoint;
                    }

                    // Direction to target
                    dir   = targetPoint - position;
                    dir.y = 0;

                    // Normalized direction
                    Vector3 normdir = VectorMath.Normalize(dir, out distanceToWaypoint);

                    // Is the endpoint of the path (part) the current target point
                    bool targetIsEndPoint = lastCorner && nextCorners.Count - tgIndex == 1;

                    // When very close to the target point, move directly towards the target
                    // instead of using accelerations as they tend to be a bit jittery in this case
                    if (targetIsEndPoint && distanceToWaypoint < 0.01f * maxSpeed)
                    {
                        // Velocity will be at most 1 times max speed, it will be further clamped below
                        velocity = (targetPoint - position) * 100;
                    }
                    else
                    {
                        // Calculate force from walls
                        Vector3 wallForceVector = CalculateWallForce(position, normdir);
                        Vector2 accelerationVector;

                        if (targetIsEndPoint)
                        {
                            accelerationVector = CalculateAccelerationToReachPoint(To2D(targetPoint - position), Vector2.zero, To2D(velocity));
                            //accelerationVector = Vector3.ClampMagnitude(accelerationVector, acceleration);

                            // Reduce the wall avoidance force as we get closer to our target
                            wallForceVector *= System.Math.Min(distanceToWaypoint / 0.5f, 1);

                            if (distanceToWaypoint < endReachedDistance)
                            {
                                // END REACHED
                                NextPart();
                            }
                        }
                        else
                        {
                            var nextNextCorner = tgIndex < nextCorners.Count - 1 ? nextCorners[tgIndex + 1] : (targetPoint - position) * 2 + position;
                            var targetVelocity = (nextNextCorner - targetPoint).normalized * maxSpeed;

                            accelerationVector = CalculateAccelerationToReachPoint(To2D(targetPoint - position), To2D(targetVelocity), To2D(velocity));
                        }

                        // Update the velocity using the acceleration
                        velocity += (new Vector3(accelerationVector.x, 0, accelerationVector.y) + wallForceVector * wallForce) * deltaTime;
                    }

                    var currentNode = fn.CurrentNode;

                    Vector3 closestOnNode;
                    if (currentNode != null)
                    {
                        closestOnNode = currentNode.ClosestPointOnNode(position);
                    }
                    else
                    {
                        closestOnNode = position;
                    }

                    // Distance to the end of the path (as the crow flies)
                    var distToEndOfPath = (fn.exactEnd - closestOnNode).magnitude;

                    // Max speed to use for this frame
                    var currentMaxSpeed = maxSpeed;
                    currentMaxSpeed *= Mathf.Sqrt(Mathf.Min(1, distToEndOfPath / (maxSpeed * slowdownTime)));

                    // Check if the agent should slow down in case it is not facing the direction it wants to move in
                    if (slowWhenNotFacingTarget)
                    {
                        // 1 when normdir is in the same direction as tr.forward
                        // 0.2 when they point in the opposite directions
                        float directionSpeedFactor = Mathf.Max((Vector3.Dot(normdir, tr.forward) + 0.5f) / 1.5f, 0.2f);
                        currentMaxSpeed *= directionSpeedFactor;
                        float currentSpeed = VectorMath.MagnitudeXZ(velocity);
                        float prevy        = velocity.y;
                        velocity.y   = 0;
                        currentSpeed = Mathf.Min(currentSpeed, currentMaxSpeed);

                        // Make sure the agent always moves in the forward direction
                        // except when getting close to the end of the path in which case
                        // the velocity can be in any direction
                        velocity = Vector3.Lerp(velocity.normalized * currentSpeed, tr.forward * currentSpeed, Mathf.Clamp(targetIsEndPoint ? distanceToWaypoint * 2 : 1, 0.0f, 0.5f));

                        velocity.y = prevy;
                    }
                    else
                    {
                        velocity = VectorMath.ClampMagnitudeXZ(velocity, currentMaxSpeed);
                    }

                    // Apply gravity
                    velocity += deltaTime * gravity;

                    if (rvoController != null && rvoController.enabled)
                    {
                        // Send a message to the RVOController that we want to move
                        // with this velocity. In the next simulation step, this velocity
                        // will be processed and it will be fed back the rvo controller
                        // and finally it will be used by this script when calling the
                        // CalculateMovementDelta method below

                        // Make sure that we don't move further than to the end point of the path
                        // If the RVO simulation FPS is low and we did not do this, the agent
                        // might overshoot the target a lot.
                        var rvoTarget = position + VectorMath.ClampMagnitudeXZ(velocity, distToEndOfPath);
                        rvoController.SetTarget(rvoTarget, VectorMath.MagnitudeXZ(velocity), maxSpeed);
                    }

                    // Direction and distance to move during this frame
                    Vector3 deltaPosition;
                    if (rvoController != null && rvoController.enabled)
                    {
                        // Use RVOController to get a processed delta position
                        // such that collisions will be avoided if possible
                        deltaPosition = rvoController.CalculateMovementDelta(position, deltaTime);

                        // The RVOController does not know about gravity
                        // so we copy it from the normal velocity calculation
                        deltaPosition.y = velocity.y * deltaTime;
                    }
                    else
                    {
                        deltaPosition = velocity * deltaTime;
                    }

                    if (targetIsEndPoint)
                    {
                        // Rotate towards the direction that the agent was in
                        // when the target point was seen for the first time
                        // TODO: Some magic constants here, should probably compute them from other variables
                        // or expose them as separate variables
                        Vector3 trotdir = Vector3.Lerp(deltaPosition.normalized, currentTargetDirection, System.Math.Max(1 - distanceToWaypoint * 2, 0));
                        RotateTowards(trotdir);
                    }
                    else
                    {
                        // Rotate towards the direction we are moving in
                        RotateTowards(deltaPosition);
                    }

                    if (controller != null && controller.enabled)
                    {
                        // Use CharacterController
                        tr.position = position;
                        controller.Move(deltaPosition);
                        // Grab the position after the movement to be able to take physics into account
                        position = tr.position;
                    }
                    else
                    {
                        // Use Transform
                        float lastY = position.y;
                        position += deltaPosition;
                        // Position the character on the ground
                        position = RaycastPosition(position, lastY);
                    }

                    // Clamp the position to the navmesh after movement is done
                    var clampedPosition = fn.ClampToNavmesh(position);

                    if (position != clampedPosition)
                    {
                        // The agent was outside the navmesh. Remove that component of the velocity
                        // so that the velocity only goes along the direction of the wall, not into it
                        var difference = clampedPosition - position;
                        velocity -= difference * Vector3.Dot(difference, velocity) / difference.sqrMagnitude;

                        // Make sure the RVO system knows that there was a collision here
                        // Otherwise other agents may think this agent continued to move forwards
                        // and avoidance quality may suffer
                        if (rvoController != null && rvoController.enabled)
                        {
                            rvoController.SetCollisionNormal(difference);
                        }
                    }

                    tr.position = clampedPosition;
                }
                else
                {
                    if (rvoController != null && rvoController.enabled)
                    {
                        //Use RVOController
                        rvoController.Move(Vector3.zero);
                    }
                }
                if (currentPart is RichSpecial)
                {
                    // The current path part is a special part, for example a link
                    // Movement during this part of the path is handled by the TraverseSpecial coroutine
                    if (!traversingSpecialPath)
                    {
                        StartCoroutine(TraverseSpecial(currentPart as RichSpecial));
                    }
                }
            }
            else
            {
                if (rvoController != null && rvoController.enabled)
                {
                    // Use RVOController
                    rvoController.Move(Vector3.zero);
                }
                else
                if (controller != null && controller.enabled)
                {
                }
                else
                {
                    tr.position = RaycastPosition(tr.position, tr.position.y);
                }
            }
        }