public static void Main(string[] argv)
    {
        modshogun.init_shogun_with_defaults();

        double[] ground_truth = Load.load_labels("../data/label_train_twoclass.dat");
        Random   RandomNumber = new Random();

        double[] predicted = new double[ground_truth.Length];
        for (int i = 0; i < ground_truth.Length; i++)
        {
            predicted[i] = RandomNumber.NextDouble();
        }

        BinaryLabels ground_truth_labels = new BinaryLabels(ground_truth);
        BinaryLabels predicted_labels    = new BinaryLabels(predicted);

        ContingencyTableEvaluation base_evaluator = new ContingencyTableEvaluation();

        base_evaluator.evaluate(predicted_labels, ground_truth_labels);

        AccuracyMeasure evaluator1 = new AccuracyMeasure();
        double          accuracy   = evaluator1.evaluate(predicted_labels, ground_truth_labels);

        ErrorRateMeasure evaluator2 = new ErrorRateMeasure();
        double           errorrate  = evaluator2.evaluate(predicted_labels, ground_truth_labels);

        BALMeasure evaluator3 = new BALMeasure();
        double     bal        = evaluator3.evaluate(predicted_labels, ground_truth_labels);

        WRACCMeasure evaluator4 = new WRACCMeasure();
        double       wracc      = evaluator4.evaluate(predicted_labels, ground_truth_labels);

        F1Measure evaluator5 = new F1Measure();
        double    f1         = evaluator5.evaluate(predicted_labels, ground_truth_labels);

        CrossCorrelationMeasure evaluator6 = new CrossCorrelationMeasure();
        double crosscorrelation            = evaluator6.evaluate(predicted_labels, ground_truth_labels);

        RecallMeasure evaluator7 = new RecallMeasure();
        double        recall     = evaluator7.evaluate(predicted_labels, ground_truth_labels);

        PrecisionMeasure evaluator8 = new PrecisionMeasure();
        double           precision  = evaluator8.evaluate(predicted_labels, ground_truth_labels);

        SpecificityMeasure evaluator9  = new SpecificityMeasure();
        double             specificity = evaluator9.evaluate(predicted_labels, ground_truth_labels);

        Console.Write("{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}\n", accuracy, errorrate, bal, wracc, f1, crosscorrelation, recall, precision, specificity);

        modshogun.exit_shogun();
    }
    public static void Main(string[] argv)
    {
        modshogun.init_shogun_with_defaults();

        double[] ground_truth = Load.load_labels("../data/label_train_twoclass.dat");
        Random RandomNumber = new Random();
        double[] predicted = new double[ground_truth.Length];
        for (int i = 0; i < ground_truth.Length; i++) {
            predicted[i] = RandomNumber.NextDouble();
        }

        BinaryLabels ground_truth_labels = new BinaryLabels(ground_truth);
        BinaryLabels predicted_labels = new BinaryLabels(predicted);

        ContingencyTableEvaluation base_evaluator = new ContingencyTableEvaluation();
        base_evaluator.evaluate(predicted_labels,ground_truth_labels);

        AccuracyMeasure evaluator1 = new AccuracyMeasure();
        double accuracy = evaluator1.evaluate(predicted_labels,ground_truth_labels);

        ErrorRateMeasure evaluator2 = new ErrorRateMeasure();
        double errorrate = evaluator2.evaluate(predicted_labels,ground_truth_labels);

        BALMeasure evaluator3 = new BALMeasure();
        double bal = evaluator3.evaluate(predicted_labels,ground_truth_labels);

        WRACCMeasure evaluator4 = new WRACCMeasure();
        double wracc = evaluator4.evaluate(predicted_labels,ground_truth_labels);

        F1Measure evaluator5 = new F1Measure();
        double f1 = evaluator5.evaluate(predicted_labels,ground_truth_labels);

        CrossCorrelationMeasure evaluator6 = new CrossCorrelationMeasure();
        double crosscorrelation = evaluator6.evaluate(predicted_labels,ground_truth_labels);

        RecallMeasure evaluator7 = new RecallMeasure();
        double recall = evaluator7.evaluate(predicted_labels,ground_truth_labels);

        PrecisionMeasure evaluator8 = new PrecisionMeasure();
        double precision = evaluator8.evaluate(predicted_labels,ground_truth_labels);

        SpecificityMeasure evaluator9 = new SpecificityMeasure();
        double specificity = evaluator9.evaluate(predicted_labels,ground_truth_labels);

        Console.Write("{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}\n", accuracy, errorrate, bal, wracc, f1, crosscorrelation, recall, precision, specificity);

        modshogun.exit_shogun();
    }
    static void Main(string[] argv)
    {
        modshogun.init_shogun_with_defaults();

        DoubleMatrix ground_truth = Load.load_labels("../data/label_train_twoclass.dat");
        DoubleMatrix predicted = randn(1, ground_truth.Length);

        Labels ground_truth_labels = new Labels(ground_truth);
        Labels predicted_labels = new Labels(predicted);

        ContingencyTableEvaluation base_evaluator = new ContingencyTableEvaluation();
        base_evaluator.evaluate(predicted_labels,ground_truth_labels);

        AccuracyMeasure evaluator1 = new AccuracyMeasure();
        double accuracy = evaluator1.evaluate(predicted_labels,ground_truth_labels);

        ErrorRateMeasure evaluator2 = new ErrorRateMeasure();
        double errorrate = evaluator2.evaluate(predicted_labels,ground_truth_labels);

        BALMeasure evaluator3 = new BALMeasure();
        double bal = evaluator3.evaluate(predicted_labels,ground_truth_labels);

        WRACCMeasure evaluator4 = new WRACCMeasure();
        double wracc = evaluator4.evaluate(predicted_labels,ground_truth_labels);

        F1Measure evaluator5 = new F1Measure();
        double f1 = evaluator5.evaluate(predicted_labels,ground_truth_labels);

        CrossCorrelationMeasure evaluator6 = new CrossCorrelationMeasure();
        double crosscorrelation = evaluator6.evaluate(predicted_labels,ground_truth_labels);

        RecallMeasure evaluator7 = new RecallMeasure();
        double recall = evaluator7.evaluate(predicted_labels,ground_truth_labels);

        PrecisionMeasure evaluator8 = new PrecisionMeasure();
        double precision = evaluator8.evaluate(predicted_labels,ground_truth_labels);

        SpecificityMeasure evaluator9 = new SpecificityMeasure();
        double specificity = evaluator9.evaluate(predicted_labels,ground_truth_labels);

        Console.Write("{0:F}, {1:F}, {2:F}, {3:F}, {4:F}, {5:F}, {6:F}, {7:F}, {8:F}\n", accuracy, errorrate, bal, wracc, f1, crosscorrelation, recall, precision, specificity);

        modshogun.exit_shogun();
    }
Exemplo n.º 4
0
 internal static HandleRef getCPtr(SpecificityMeasure obj) {
   return (obj == null) ? new HandleRef(null, IntPtr.Zero) : obj.swigCPtr;
 }
Exemplo n.º 5
0
 internal static HandleRef getCPtr(SpecificityMeasure obj)
 {
     return((obj == null) ? new HandleRef(null, IntPtr.Zero) : obj.swigCPtr);
 }