public static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double[] ground_truth = Load.load_labels("../data/label_train_twoclass.dat"); Random RandomNumber = new Random(); double[] predicted = new double[ground_truth.Length]; for (int i = 0; i < ground_truth.Length; i++) { predicted[i] = RandomNumber.NextDouble(); } BinaryLabels ground_truth_labels = new BinaryLabels(ground_truth); BinaryLabels predicted_labels = new BinaryLabels(predicted); ContingencyTableEvaluation base_evaluator = new ContingencyTableEvaluation(); base_evaluator.evaluate(predicted_labels, ground_truth_labels); AccuracyMeasure evaluator1 = new AccuracyMeasure(); double accuracy = evaluator1.evaluate(predicted_labels, ground_truth_labels); ErrorRateMeasure evaluator2 = new ErrorRateMeasure(); double errorrate = evaluator2.evaluate(predicted_labels, ground_truth_labels); BALMeasure evaluator3 = new BALMeasure(); double bal = evaluator3.evaluate(predicted_labels, ground_truth_labels); WRACCMeasure evaluator4 = new WRACCMeasure(); double wracc = evaluator4.evaluate(predicted_labels, ground_truth_labels); F1Measure evaluator5 = new F1Measure(); double f1 = evaluator5.evaluate(predicted_labels, ground_truth_labels); CrossCorrelationMeasure evaluator6 = new CrossCorrelationMeasure(); double crosscorrelation = evaluator6.evaluate(predicted_labels, ground_truth_labels); RecallMeasure evaluator7 = new RecallMeasure(); double recall = evaluator7.evaluate(predicted_labels, ground_truth_labels); PrecisionMeasure evaluator8 = new PrecisionMeasure(); double precision = evaluator8.evaluate(predicted_labels, ground_truth_labels); SpecificityMeasure evaluator9 = new SpecificityMeasure(); double specificity = evaluator9.evaluate(predicted_labels, ground_truth_labels); Console.Write("{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}\n", accuracy, errorrate, bal, wracc, f1, crosscorrelation, recall, precision, specificity); modshogun.exit_shogun(); }
public static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double[] ground_truth = Load.load_labels("../data/label_train_twoclass.dat"); Random RandomNumber = new Random(); double[] predicted = new double[ground_truth.Length]; for (int i = 0; i < ground_truth.Length; i++) { predicted[i] = RandomNumber.NextDouble(); } BinaryLabels ground_truth_labels = new BinaryLabels(ground_truth); BinaryLabels predicted_labels = new BinaryLabels(predicted); ContingencyTableEvaluation base_evaluator = new ContingencyTableEvaluation(); base_evaluator.evaluate(predicted_labels,ground_truth_labels); AccuracyMeasure evaluator1 = new AccuracyMeasure(); double accuracy = evaluator1.evaluate(predicted_labels,ground_truth_labels); ErrorRateMeasure evaluator2 = new ErrorRateMeasure(); double errorrate = evaluator2.evaluate(predicted_labels,ground_truth_labels); BALMeasure evaluator3 = new BALMeasure(); double bal = evaluator3.evaluate(predicted_labels,ground_truth_labels); WRACCMeasure evaluator4 = new WRACCMeasure(); double wracc = evaluator4.evaluate(predicted_labels,ground_truth_labels); F1Measure evaluator5 = new F1Measure(); double f1 = evaluator5.evaluate(predicted_labels,ground_truth_labels); CrossCorrelationMeasure evaluator6 = new CrossCorrelationMeasure(); double crosscorrelation = evaluator6.evaluate(predicted_labels,ground_truth_labels); RecallMeasure evaluator7 = new RecallMeasure(); double recall = evaluator7.evaluate(predicted_labels,ground_truth_labels); PrecisionMeasure evaluator8 = new PrecisionMeasure(); double precision = evaluator8.evaluate(predicted_labels,ground_truth_labels); SpecificityMeasure evaluator9 = new SpecificityMeasure(); double specificity = evaluator9.evaluate(predicted_labels,ground_truth_labels); Console.Write("{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}\n", accuracy, errorrate, bal, wracc, f1, crosscorrelation, recall, precision, specificity); modshogun.exit_shogun(); }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); DoubleMatrix ground_truth = Load.load_labels("../data/label_train_twoclass.dat"); DoubleMatrix predicted = randn(1, ground_truth.Length); Labels ground_truth_labels = new Labels(ground_truth); Labels predicted_labels = new Labels(predicted); ContingencyTableEvaluation base_evaluator = new ContingencyTableEvaluation(); base_evaluator.evaluate(predicted_labels,ground_truth_labels); AccuracyMeasure evaluator1 = new AccuracyMeasure(); double accuracy = evaluator1.evaluate(predicted_labels,ground_truth_labels); ErrorRateMeasure evaluator2 = new ErrorRateMeasure(); double errorrate = evaluator2.evaluate(predicted_labels,ground_truth_labels); BALMeasure evaluator3 = new BALMeasure(); double bal = evaluator3.evaluate(predicted_labels,ground_truth_labels); WRACCMeasure evaluator4 = new WRACCMeasure(); double wracc = evaluator4.evaluate(predicted_labels,ground_truth_labels); F1Measure evaluator5 = new F1Measure(); double f1 = evaluator5.evaluate(predicted_labels,ground_truth_labels); CrossCorrelationMeasure evaluator6 = new CrossCorrelationMeasure(); double crosscorrelation = evaluator6.evaluate(predicted_labels,ground_truth_labels); RecallMeasure evaluator7 = new RecallMeasure(); double recall = evaluator7.evaluate(predicted_labels,ground_truth_labels); PrecisionMeasure evaluator8 = new PrecisionMeasure(); double precision = evaluator8.evaluate(predicted_labels,ground_truth_labels); SpecificityMeasure evaluator9 = new SpecificityMeasure(); double specificity = evaluator9.evaluate(predicted_labels,ground_truth_labels); Console.Write("{0:F}, {1:F}, {2:F}, {3:F}, {4:F}, {5:F}, {6:F}, {7:F}, {8:F}\n", accuracy, errorrate, bal, wracc, f1, crosscorrelation, recall, precision, specificity); modshogun.exit_shogun(); }
internal static HandleRef getCPtr(SpecificityMeasure obj) { return (obj == null) ? new HandleRef(null, IntPtr.Zero) : obj.swigCPtr; }
internal static HandleRef getCPtr(SpecificityMeasure obj) { return((obj == null) ? new HandleRef(null, IntPtr.Zero) : obj.swigCPtr); }