Exemplo n.º 1
0
        public async System.Threading.Tasks.Task <IEnumerable <string> > GetRecommendationsForUserAsync(string user, string[] products, int recommendationsInPage)
        {
            var model = await PredictionModel.ReadAsync <SalesData, SalesPrediction>(modelLocation);

            // Create all possible SalesData objects between (unique) CustomerId x ProductId (many)
            var crossPredictions = from product in products
                                   select new SalesData {
                CustomerId = user, ProductId = product
            };

            // Execute the recommendation model with previous generated data
            var predictions = model.Predict(crossPredictions).ToArray();

            //Count how many recommended products the user gets (with more or less score..)
            var numberOfRecommendedProducts = predictions.Where(x => x.Recommendation.IsTrue == true).Select(x => x.Recommendation).Count();

            //Count how many recommended products the user gets (with more than 0.7 score..)
            var RecommendedProductsOverThreshold = (from p in predictions
                                                    orderby p.Score descending
                                                    where p.Recommendation.IsTrue == true && p.Score > 0.7
                                                    select new SalesPrediction {
                ProductId = p.ProductId, Score = p.Score, Recommendation = p.Recommendation
            });

            var numberOfRecommendedProductsOverThreshold = RecommendedProductsOverThreshold.Count();

            // Return (recommendationsInPage) product Ids ordered by Score
            return(predictions
                   .Where(p => p.Recommendation.IsTrue)
                   .OrderByDescending(p => p.Score)
                   .Select(p => p.ProductId)
                   .Take(recommendationsInPage));
        }
Exemplo n.º 2
0
        public static List <DataSolution> Predict(string NnModelPath, List <NnRow> dataset)
        {
            List <DataSolution> predictions = new List <DataSolution>();

            if (string.IsNullOrWhiteSpace(NnModelPath))
            {
                return(predictions);
            }

            var task = PredictionModel.ReadAsync <MLNetData, MLNetPredict>(NnModelPath);
            PredictionModel <MLNetData, MLNetPredict> model = task.Result;

            MLNetData[]         testSet = Convert(dataset);
            List <MLNetPredict> preds   = model.Predict(testSet).ToList();

            if (dataset.Count != preds.Count)
            {
                throw new InvalidDataException();
            }

            // Write out predictions to CSV
            for (int i = 0; i < dataset.Count; i++)
            {
                predictions.Add(new DataSolution()
                {
                    ID_CPTE = dataset[i].id, Default = (int)preds[i].PredictedLabel
                });
            }

            return(predictions);
        }
Exemplo n.º 3
0
        /// <summary>
        /// A simple function that takes a string and does a ToUpper
        /// </summary>
        /// <param name="input"></param>
        /// <param name="context"></param>
        /// <returns></returns>
        public string FunctionHandler(JObject jObjectInput, ILambdaContext context)
        {
            string input = jObjectInput["item"].ToObject <string>();
            PredictionModel <SentimentData, SentimentPrediction> model =
                PredictionModel.ReadAsync <SentimentData, SentimentPrediction>(modelPath).Result;

            SentimentData data = new SentimentData
            {
                SentimentText = input,
                Sentiment     = 0
            };
            SentimentPrediction prediction = model.Predict(data);

            DynamoDbSchema schematizedPrediction = new DynamoDbSchema
            {
                Feedback  = input,
                Date      = DateTime.UtcNow.ToString("MM/dd/yyyy"),
                Sentiment = prediction.Sentiment ? "positive" : "negative"
            };

            string serializedPrediction = JsonConvert.SerializeObject(schematizedPrediction);
            string response             = PostPredictionViaHttp(serializedPrediction);

            return(JsonConvert.SerializeObject(new Dictionary <string, string>
            {
                { "dynamoPayload", serializedPrediction },
                { "dynamoResponse", response }
            }));
            // return PostPredicitionViaInvokeRequest(serializedPrediction);
        }
Exemplo n.º 4
0
        public static IActionResult Run(
            [HttpTrigger(AuthorizationLevel.Function, "get", "post", Route = null)] HttpRequest req,
            [Blob("models/model.zip", FileAccess.Read, Connection = "AzureWebJobsStorage")] Stream serializedModel,
            TraceWriter log)
        {
            // Workaround for Azure Functions Host
            if (typeof(Microsoft.ML.Runtime.Data.LoadTransform) == null ||
                typeof(Microsoft.ML.Runtime.Learners.LinearClassificationTrainer) == null ||
                typeof(Microsoft.ML.Runtime.Internal.CpuMath.SseUtils) == null ||
                typeof(Microsoft.ML.Runtime.FastTree.FastTree) == null)
            {
                log.Error("Error loading ML.NET");
                return(new StatusCodeResult(500));
            }

            //Read incoming request body
            string requestBody = new StreamReader(req.Body).ReadToEnd();

            log.Info(requestBody);

            //Bind request body to IrisData object
            IrisData data = JsonConvert.DeserializeObject <IrisData>(requestBody);

            //Load prediction model
            var model = PredictionModel.ReadAsync <IrisData, IrisPrediction>(serializedModel).Result;

            //Make prediction
            IrisPrediction prediction = model.Predict(data);

            //Return prediction
            return((IActionResult) new OkObjectResult(prediction.PredictedLabels));
        }
        public async void TrainSaveModelAndPredict()
        {
            var dataPath     = GetDataPath(SentimentDataPath);
            var testDataPath = GetDataPath(SentimentDataPath);
            var pipeline     = new LearningPipeline();

            pipeline.Add(new TextLoader(dataPath).CreateFrom <SentimentData>());
            pipeline.Add(MakeSentimentTextTransform());
            pipeline.Add(new FastTreeBinaryClassifier()
            {
                NumLeaves = 5, NumTrees = 5, MinDocumentsInLeafs = 2
            });
            pipeline.Add(new PredictedLabelColumnOriginalValueConverter()
            {
                PredictedLabelColumn = "PredictedLabel"
            });

            var model     = pipeline.Train <SentimentData, SentimentPrediction>();
            var modelName = "trainSaveAndPredictdModel.zip";

            DeleteOutputPath(modelName);
            await model.WriteAsync(modelName);

            var loadedModel = await PredictionModel.ReadAsync <SentimentData, SentimentPrediction>(modelName);

            var singlePrediction = loadedModel.Predict(new SentimentData()
            {
                SentimentText = "Not big fan of this."
            });

            Assert.True(singlePrediction.Sentiment);
        }
Exemplo n.º 6
0
        static async Task Main(string[] args)
        {
            using (var source = new CancellationTokenSource())
            {
                var model = await MemoriaAgent.Build(source.Token);

                var evaluation = await model.Evaluate();

                Console.WriteLine($" Root Mean Square Error : {evaluation.Rms}");
                Console.WriteLine($" Coef of determination : {evaluation.RSquared}");

                var test = new Sell
                {
                    Temperature        = 7,
                    Age                = 72,
                    TreatedProbability = 0.7741935483870968f,
                    CityCode           = 1
                };

                var prediction = model.Predict(test);
                Console.WriteLine($"Prediction is {prediction.Amount}");

                Console.WriteLine($"Saving the model...");
                await model.SaveAsync(source.Token);

                Console.WriteLine($"Reloading the model...");
                var loadedModel = await PredictionModel.ReadAsync <Sell, SellPrediction>(Files.LoadStorePath());

                prediction = loadedModel.Predict(test);
                Console.WriteLine($"Prediction using previous test data is {prediction.Amount}");
            }
        }
Exemplo n.º 7
0
        /// <summary>
        /// Predict samples using saved model
        /// </summary>
        /// <param name="outputModelPath">Model file path</param>
        /// <returns></returns>
        public static async Task TestPrediction(string outputModelPath = "Pricing_fastTree_model.zip")
        {
            Console.WriteLine("*********************************");
            Console.WriteLine("Testing pricing Unit Forecast model");

            // Read the model that has been previously saved by the method SaveModel
            var model = await PredictionModel.ReadAsync <PriceData, PriceUnitPrediction>(outputModelPath);

            Console.WriteLine("** Testing Pricing 1 **");

            // STEP 8: Use your model to make a prediction
            // You can change these numbers to test different predictions
            PriceData dataSample = new PriceData()
            {
                property_code  = "building",
                Avdrags_code   = "1",
                property_count = 2,
                floor_Price    = 1.3f,
                payment_type   = "CRD",
                Model_Price    = 0 // predict it. actual = 7
            };

            //model.Predict() predicts the indicative price to the one provided above
            PriceUnitPrediction prediction = model.Predict(dataSample);

            Console.WriteLine("indicative Pricing: {0}, actual Pricing: 7", prediction.Model_Price);
        }
Exemplo n.º 8
0
        public static async Task <IActionResult> Run([HttpTrigger(AuthorizationLevel.Function, "get", "post", Route = null)]
                                                     HttpRequest req, TraceWriter log)
        {
            var r = new StreamReader(req.Body);

            log.Info("Prediction trigger function started...");
            var content = await r.ReadToEndAsync();

            log.Info(content);

            //if (typeof(Microsoft.ML.Runtime.Data.LoadTransform) == null ||
            //    typeof(Microsoft.ML.Runtime.Learners.LinearClassificationTrainer) == null ||
            //    typeof(Microsoft.ML.Runtime.Internal.CpuMath.SseUtils) == null)
            //{
            //  log.Info("Assemblies are NOT loaded correctly");
            //  return new BadRequestObjectResult("ML model failed to load");
            //}

            var request = JsonConvert.DeserializeObject <PredictionRequest>(content);

            var model = await PredictionModel.ReadAsync <BankStatementLineItem, PredictedLabel>(PredictionModelWrapper.GetModel());

            var predicted = model.Predict(BankStatementLineItem.ToBankStatementLineItem(request));

            //return predicted != null
            //  ? (ActionResult) new OkObjectResult(predicted.SubCategory)
            //  : new BadRequestObjectResult("prediction failed");

            return(new BadRequestObjectResult("no dice"));
        }
Exemplo n.º 9
0
        // gets appartment data and predicts a price
        public async Task <string> predict(int inCityID,
                                           int inRoomsNumber,
                                           int inSizeInMeters,
                                           bool inIsThereElivator,
                                           bool inFurnitureInculded,
                                           bool inIsRenovated)
        {
            // Get the city in which the apartment is located
            Models.City currCity = _context.City.Where(c => c.ID == inCityID).First();

            // create an ApartmentData object from the given parameters
            ML.ApartmentData newExample = new ML.ApartmentData
            {
                cityID               = inCityID,
                cityAvarageSalary    = currCity.avarageSalary,
                region               = (int)currCity.region,
                cityGraduatesPercent = currCity.GraduatesPercents,
                RoomsNumber          = inRoomsNumber,
                sizeInMeters         = inSizeInMeters,
                isThereElivator      = inIsThereElivator,
                furnitureInculded    = inFurnitureInculded,
                isRenovated          = inIsRenovated
            };

            //Read the model from the zip file
            var model = await PredictionModel.ReadAsync <ApartmentData, AppartmentPricePrediction>(ModelBuilder.MODEL_PATH);

            // Make the prediction
            ML.AppartmentPricePrediction prediction = model.Predict(newExample);

            return(((int)prediction.price).ToString());
        }
Exemplo n.º 10
0
        public string Post([FromBody] IrisData instance)
        {
            var model      = PredictionModel.ReadAsync <IrisData, IrisPrediction>("model.zip").Result;
            var prediction = model.Predict(instance);

            return(prediction.PredictedLabels);
        }
Exemplo n.º 11
0
        public async Task EvaluateAsync(string modelPath, string csvPath)
        {
            var model = await PredictionModel.ReadAsync <Product, ProductCategoryPrediction>(modelPath).ConfigureAwait(false);

            // To evaluate how good the model predicts values, the model is ran against new set
            // of data (test data) that was not involved in training.
            var testData = new TextLoader(csvPath).CreateFrom <Product>(useHeader: false, allowQuotedStrings: false, supportSparse: false);

            // ClassificationEvaluator performs evaluation for Multiclass Classification type of ML problems.
            var evaluator = new ClassificationEvaluator {
                OutputTopKAcc = 3
            };

            Console.WriteLine("=============== Evaluating model ===============");

            var metrics = evaluator.Evaluate(model, testData);

            Console.WriteLine("Metrics:");
            Console.WriteLine($"    AccuracyMacro = {metrics.AccuracyMacro:0.####}, a value between 0 and 1, the closer to 1, the better");
            Console.WriteLine($"    AccuracyMicro = {metrics.AccuracyMicro:0.####}, a value between 0 and 1, the closer to 1, the better");
            Console.WriteLine($"    LogLoss = {metrics.LogLoss:0.####}, the closer to 0, the better");
            Console.WriteLine($"    LogLoss for class 1 = {metrics.PerClassLogLoss[0]:0.####}, the closer to 0, the better");
            Console.WriteLine($"    LogLoss for class 2 = {metrics.PerClassLogLoss[1]:0.####}, the closer to 0, the better");
            Console.WriteLine($"    LogLoss for class 3 = {metrics.PerClassLogLoss[2]:0.####}, the closer to 0, the better");

            Console.WriteLine("=============== End evaluating ===============");
            Console.WriteLine();
        }
Exemplo n.º 12
0
            public static string GetPredictedResult(string buying, string maintenance, string doors, string persons, string lugboot, string safety)
            {
                buying      = ValueMapper(buying);
                maintenance = ValueMapper(maintenance);
                doors       = ValueMapper(doors);
                persons     = ValueMapper(persons);
                lugboot     = ValueMapper(lugboot);
                safety      = ValueMapper(safety);

                CarEval carEval = new CarEval()
                {
                    Buying = buying, Maintenance = maintenance, Doors = doors, Persons = persons, LugBoot = lugboot, Safety = safety
                };

                // Load model
                string appPath   = Path.GetDirectoryName(Environment.GetCommandLineArgs()[0]);
                string modelPath = Path.Combine(appPath, "CarEvaluator.zip");

                // Read model
                var model = PredictionModel.ReadAsync <CarEval, CarEvalPredictor>(modelPath).Result;

                // Predict car value
                var prediction = model.Predict(carEval);

                // Return to the caller
                return(ValueMapper(prediction.Result));
            }
Exemplo n.º 13
0
        internal override async Task <ReturnObj <PredictionModel <T, TK> > > LoadOrGenerateModelAsync <T, TK>(string trainingFileName)
        {
            PredictionModel <T, TK> model;

            if (File.Exists(ModelName))
            {
                model = await PredictionModel.ReadAsync <T, TK>(ModelName);

                return(new ReturnObj <PredictionModel <T, TK> >(model));
            }

            try
            {
                var pipeline = new LearningPipeline
                {
                    new TextLoader(trainingFileName).CreateFrom <T>(separator: ','),
                    new ColumnConcatenator("Features", "Features"),
                    new FastTreeRegressor()
                };

                model = pipeline.Train <T, TK>();

                await model.WriteAsync(ModelName);
            }
            catch (Exception ex)
            {
                return(new ReturnObj <PredictionModel <T, TK> >(ex));
            }

            return(new ReturnObj <PredictionModel <T, TK> >(model));
        }
        public async void PredictHousePriceModelTest()
        {
            string modelFilePath = GetOutputPath("PredictHousePriceModelTest.zip");

            ModelHelper.WriteKcHousePriceModel(GetDataPath("kc_house_data.csv"), modelFilePath);

            PredictionModel <HousePriceData, HousePricePrediction> model = await PredictionModel.ReadAsync <HousePriceData, HousePricePrediction>(modelFilePath);

            HousePricePrediction prediction = model.Predict(new HousePriceData()
            {
                Bedrooms      = 3,
                Bathrooms     = 2,
                SqftLiving    = 1710,
                SqftLot       = 4697,
                Floors        = 1.5f,
                Waterfront    = 0,
                View          = 0,
                Condition     = 5,
                Grade         = 6,
                SqftAbove     = 1710,
                SqftBasement  = 0,
                YearBuilt     = 1941,
                YearRenovated = 0,
                Zipcode       = 98002,
                Lat           = 47.3048f,
                Long          = -122.218f,
                SqftLiving15  = 1030,
                SqftLot15     = 4705
            });

            Assert.InRange(prediction.Price, 260_000, 330_000);
        }
        public async Task <string> ClassifySentiment(string usersUtterance)
        {
            try
            {
                var data = new SentimentData()
                {
                    SentimentText = usersUtterance
                };

                var blobResult = _blobService.DownloadModelAsync().Result;

                if (blobResult != null)
                {
                    var model = await PredictionModel.ReadAsync <SentimentData, SentimentPrediction>(blobResult);

                    var classification = model.Predict(data);
                    _logger.LogInfo($"Sentiment returned from model was: {classification.Sentiment}");

                    return($"{(classification.Sentiment ? "Positive" : "Negative")}");
                }

                return(null);
            }
            catch (Exception ex)
            {
                _logger.LogException(ex);
                throw ex;
            }
        }
Exemplo n.º 16
0
        private async void ResultsGridView_ItemClick(object sender, ItemClickEventArgs e)
        {
            var gridItemClicked = (ResultGrigViewItem)e.ClickedItem;

            switch (gridItemClicked.Name)
            {
            case "ML.NET":
                var model = PredictionModel
                            .ReadAsync <Fatalities, FatalitiesPrediction>("Model.zip").Result;
                var prediction = model.Predict(_fatality);
                ScoreTxtBlock.Text = prediction.InjurySeverity.ToString("N0");
                var injSev = prediction.InjurySeverity.ToString("N");
                LoadatOTextBlock(injSev);
                break;

            case "Azure Machine Learning Studio":
                var isConnected = CrossConnectivity.Current.IsConnected;
                if (isConnected)
                {
                    var result = await new AzureMlPrediction(_azureMlFatality).InvokeRequestResponseService();
                    LoadatOTextBlock(result);
                }
                else
                {
                    LoadatOTextBlock("Network Error");
                }
                break;
            }
        }
        public async Task <ActionResult> Index(List <int> ingredient, List <int> amount)
        {
            PredictionModel <ShakVector, ShakPrediction> model = await PredictionModel.ReadAsync <ShakVector, ShakPrediction>(_modelpath);

            ShakVector newVec = new ShakVector
            {
                TomatoAmount                   = amount[0],
                OnionAmount                    = amount[1],
                GarlicAmount                   = amount[2],
                BellPepperAmount               = amount[3],
                EggsAmount                     = amount[4],
                PepperAmount                   = amount[5],
                SaltAmount                     = amount[6],
                BulgerianCheeseAmount          = amount[7],
                PaprikaAmount                  = amount[8],
                WaterAmount                    = amount[9],
                TomatoResekAmount              = amount[10],
                CuminAmount                    = amount[11],
                EggplantAmount                 = amount[12],
                TofuAmount                     = amount[13],
                FryingTimeBeforeTomatosMinutes = amount[14],
                CookingAfterEggsMinutes        = amount[15],
                CookingAfterTomatosMinutes     = amount[16]
            };

            ShakPrediction prediction = model.Predict(newVec);

            return(View("Prediction", prediction.Rating));
        }
Exemplo n.º 18
0
        /// <summary>
        /// Init <see cref="_model"/> : read model if exist, create it if not
        /// </summary>
        public void Init()
        {
            if (_ready.Task.IsCompleted)
            {
                return;
            }

            Task.Run(async() =>
            {
                if (!ModelExist)
                {
                    await Train();
                }
                else
                {
                    try
                    {
                        _model = await PredictionModel.ReadAsync <WindowData, RegionPrediction>(Constants.ModelPath);
                    }
                    catch (Exception)
                    {
                        File.Delete(Constants.ModelPath);
                        await Train();
                    }
                }
            }).ContinueWith(obj =>
            {
                _ready.SetResult(true);
            });
        }
Exemplo n.º 19
0
        public async Task TrainModelAsync(string modelPath, string csvPath)
        {
            var model = await PredictionModel.ReadAsync <Product, ProductCategoryPrediction>(modelPath).ConfigureAwait(false);

            var predictions = new List <ProductPrediction>();

            using (var s = File.Open(csvPath, FileMode.Open))
                using (var r = new StreamReader(s))
                {
                    string line;
                    while ((line = await r.ReadLineAsync().ConfigureAwait(false)) != null)
                    {
                        var prediction = Predict(model, line);
                        if (prediction != null)
                        {
                            predictions.Add(prediction);
                        }
                    }
                }

            var client     = this.CreateMongoClient();
            var database   = client.GetDatabase("tagger");
            var collection = database.GetCollection <ProductPrediction>("prediction");

            await collection.InsertManyAsync(predictions).ConfigureAwait(false);
        }
Exemplo n.º 20
0
        public static async Task <ExchangeRatePrediction> Predict(ExchangeRate trip)
        {
            PredictionModel <ExchangeRate, ExchangeRatePrediction> _model = await PredictionModel.ReadAsync <ExchangeRate, ExchangeRatePrediction>(_modelpath);

            var prediction = _model.Predict(trip);

            return(prediction);
        }
Exemplo n.º 21
0
        public static async Task <TaxiTripFarePrediction> Predict(TaxiTrip trip)
        {
            PredictionModel <TaxiTrip, TaxiTripFarePrediction> _model = await PredictionModel.ReadAsync <TaxiTrip, TaxiTripFarePrediction>(_modelpath);

            var prediction = _model.Predict(trip);

            return(prediction);
        }
Exemplo n.º 22
0
        public void Handle(string input)
        {
            var request = JsonConvert.DeserializeObject <SentimentRequest>(input);
            var phrases = request.Phrases;
            var model   = PredictionModel.ReadAsync <SentimentData, SentimentPrediction>("sentiment.model").Result;

            Predict(model, phrases);
        }
        //public static void Predict(PredictionModel<SentimentData, SentimentPrediction> model)

        public string Run(SentimentData SentimentData1)
        {
            var           model          = PredictionModel.ReadAsync <SentimentData, SentimentPrediction>(_modelpath.Result);
            SentimentData SentimentData2 = SentimentData1;
            var           prediction     = model.Predict(SentimentData1);

            return(Convert.ToString(prediction.Category));
        }
Exemplo n.º 24
0
        static void Main(string[] args)
        {
            if (args.Length > 0)
            {
                var action = args[0];
                if (action.ToLower() == "train")
                {
                    Console.WriteLine("Enter path to training data file followed by <Enter>:");
                    _dataPath = Console.ReadLine();

                    Console.WriteLine("Enter path to testing data file followed by <Enter>:");
                    _testDataPath = Console.ReadLine();

                    Console.WriteLine("Enter path to model file <Enter>:");
                    _modelPath = Console.ReadLine();

                    //create empty model file if it doesn't already exist
                    if (!File.Exists(_modelPath))
                    {
                        File.CreateText(_modelPath);
                    }

                    //train the model
                    var model = TrainModel();

                    //save the output file
                    model.WriteAsync(_modelPath);

                    Console.WriteLine("Model saved, starting evaluation . . .");

                    //evaluate the model
                    Evaluate(model);
                }
                else if (action.ToLower() == "predict")
                {
                    Console.WriteLine("Enter text to analyze for sentiment followed by <Enter>:");
                    var texttoanalyze = Console.ReadLine();

                    Console.WriteLine("Enter path to model file <Enter>:");
                    _modelPath = Console.ReadLine();

                    //open the model file and instantiate the model
                    var model = PredictionModel.ReadAsync <SentimentData, SentimentPrediction>(_modelPath).Result;

                    //run the prediction
                    Predict(model, texttoanalyze);
                }
                else
                {
                    throw new Exception("Must supply 'train' or 'predict' argument.");
                }
            }
            else
            {
                throw new Exception("Must supply 'train' or 'predict' argument.");
            }
        }
Exemplo n.º 25
0
        public string Get(string text)
        {
            var model      = PredictionModel.ReadAsync <SentimentData, SentimentPrediction>("Model.zip").Result;
            var prediction = model.Predict(new SentimentData {
                SentimentText = text
            });

            return(prediction.Sentiment ? "Positive" : "Negative");
        }
Exemplo n.º 26
0
        /// <summary>
        /// Predicts the test data outcomes based on a model that can be
        /// loaded via path or be given via parameter to this method.
        ///
        /// Creates test data.
        /// Predicts sentiment based on test data.
        /// Combines test data and predictions for reporting.
        /// Displays the predicted results.
        /// </summary>
        /// <param name="model"></param>
        internal static async Task <PredictionModel <ClassificationData, ClassPrediction> > PredictAsync(
            string modelPath,
            IEnumerable <ClassificationData> predicts = null,
            PredictionModel <ClassificationData, ClassPrediction> model = null)
        {
            if (model == null)
            {
                new LightGbmArguments();
                model = await PredictionModel.ReadAsync <ClassificationData, ClassPrediction>(modelPath);
            }

            if (predicts == null) // do we have input to predict a result?
            {
                return(model);
            }

            // Use the model to predict the positive or negative sentiment of the data.
            IEnumerable <ClassPrediction> predictions = model.Predict(predicts);

            Console.WriteLine();
            Console.WriteLine("Classification Predictions");
            Console.WriteLine("--------------------------");

            // Builds pairs of (sentiment, prediction)
            IEnumerable <(ClassificationData sentiment, ClassPrediction prediction)> sentimentsAndPredictions =
                predicts.Zip(predictions, (sentiment, prediction) => (sentiment, prediction));

            if (!model.TryGetScoreLabelNames(out var scoreClassNames))
            {
                throw new Exception("Can't get score classes");
            }

            foreach (var(sentiment, prediction) in sentimentsAndPredictions)
            {
                string textDisplay = sentiment.Text;

                if (textDisplay.Length > 80)
                {
                    textDisplay = textDisplay.Substring(0, 75) + "...";
                }

                string predictedClass = prediction.Class;

                Console.WriteLine("Prediction: {0}-{1} | Test: '{2}', Scores:",
                                  prediction.Class, predictedClass, textDisplay);
                for (var l = 0; l < prediction.Score.Length; ++l)
                {
                    Console.Write($"  {l}({scoreClassNames[l]})={prediction.Score[l]}");
                }
                Console.WriteLine();
                Console.WriteLine();
            }
            Console.WriteLine();

            return(model);
        }
Exemplo n.º 27
0
        private async Task <PredictionModel <ImageNetData, ImageNetPrediction> > LoadModel()
        {
            ConsoleWriteHeader("Read model");
            Console.WriteLine($"Model location: {modelLocation}");

            // Initialize TensorFlow engine
            TensorFlowUtils.Initialize();

            return(await PredictionModel.ReadAsync <ImageNetData, ImageNetPrediction>(modelLocation));
        }
        /// <summary>
        /// 使用訓練好的預測模型檔進行預測
        /// </summary>
        /// <param name="sampleData"></param>
        public static async Task PredictWithModelLoadedFromFile(IrisData sampleData = null)
        {
            // 載入之前訓練好的預測模型
            var loadPredictionModel = await PredictionModel.ReadAsync <IrisData, IrisPrediction>(ModelPath);

            // 使用匯入的預測模型進行預測,若無 sampleData 則用預設測試樣本
            var prediction = loadPredictionModel.Predict(sampleData ?? DefaultSampleData);

            Console.WriteLine($"預測的鳶尾花(Iris)類別: {prediction.PredictedLabel}");
        }
Exemplo n.º 29
0
 async void readModel()
 {
     try
     {
         model = await PredictionModel <SentimentData, SentimentPrediction> .ReadAsync <SentimentData, SentimentPrediction>(_hostingEnvironment.WebRootPath + "/Model.zip");
     }
     catch (Exception ex)
     {
     }
 }
Exemplo n.º 30
0
        /// <summary>
        /// 使用訓練好的預測模型檔進行預測
        /// </summary>
        /// <param name="sampleData"></param>
        public static async Task PredictFromFile(MachineStatusData sampleData = null)
        {
            // 載入之前訓練好的預測模型
            var loadPredictionModel = await PredictionModel.ReadAsync <MachineStatusData, MachineStatusPrediction>(ModelPath);

            // 使用匯入的預測模型進行預測,若無 sampleData 則用預設測試樣本
            var prediction = loadPredictionModel.Predict(sampleData ?? DefaultSampleData);

            Console.WriteLine($"預測類別: {prediction.PredictedLabel}");
        }