Exemplo n.º 1
0
        /// <summary>
        /// Implements "A new algorithm for Boolean operations on general polygons" 
        /// available here: http://liama.ia.ac.cn/wiki/_media/user:dong:dong_cg_05.pdf
        /// Merges two polygons, a subject and a clip with the specified operation. Polygons may not be 
        /// self-intersecting.
        /// 
        /// Warning: May yield incorrect results or even crash if polygons contain collinear points.
        /// </summary>
        /// <param name="subject">The subject polygon.</param>
        /// <param name="clip">The clip polygon, which is added, 
        /// substracted or intersected with the subject</param>
        /// <param name="clipType">The operation to be performed. Either
        /// Union, Difference or Intersection.</param>
        /// <param name="error">The error generated (if any)</param>
        /// <returns>A list of closed polygons, which make up the result of the clipping operation.
        /// Outer contours are ordered counter clockwise, holes are ordered clockwise.</returns>
        private static List<Vertices> Execute(Vertices subject, Vertices clip,
                                              PolyClipType clipType, out PolyClipError error)
        {
            Debug.Assert(subject.IsSimple() && clip.IsSimple(), "Non simple input!", "Input polygons must be simple (cannot intersect themselves).");

            // Copy polygons
            Vertices slicedSubject;
            Vertices slicedClip;
            // Calculate the intersection and touch points between
            // subject and clip and add them to both
            CalculateIntersections(subject, clip, out slicedSubject, out slicedClip);

            // Translate polygons into upper right quadrant
            // as the algorithm depends on it
            Vector2 lbSubject = subject.GetAABB().LowerBound;
            Vector2 lbClip = clip.GetAABB().LowerBound;
            Vector2 translate;
            Vector2.Min(ref lbSubject, ref lbClip, out translate);
            translate = Vector2.One - translate;
            if (translate != Vector2.Zero)
            {
                slicedSubject.Translate(ref translate);
                slicedClip.Translate(ref translate);
            }

            // Enforce counterclockwise contours
            slicedSubject.ForceCounterClockWise();
            slicedClip.ForceCounterClockWise();

            List<Edge> subjectSimplices;
            List<float> subjectCoeff;
            List<Edge> clipSimplices;
            List<float> clipCoeff;
            // Build simplical chains from the polygons and calculate the
            // the corresponding coefficients
            CalculateSimplicalChain(slicedSubject, out subjectCoeff, out subjectSimplices);
            CalculateSimplicalChain(slicedClip, out clipCoeff, out clipSimplices);

            List<Edge> resultSimplices;

            // Determine the characteristics function for all non-original edges
            // in subject and clip simplical chain and combine the edges contributing
            // to the result, depending on the clipType
            CalculateResultChain(subjectCoeff, subjectSimplices, clipCoeff, clipSimplices, clipType,
                                 out resultSimplices);

            List<Vertices> result;
            // Convert result chain back to polygon(s)
            error = BuildPolygonsFromChain(resultSimplices, out result);

            // Reverse the polygon translation from the beginning
            // and remove collinear points from output
            translate *= -1f;
            for (int i = 0; i < result.Count; ++i)
            {
                result[i].Translate(ref translate);
                SimplifyTools.CollinearSimplify(result[i]);
            }
            return result;
        }
Exemplo n.º 2
0
        /// <summary>
        /// Implements "A new algorithm for Boolean operations on general polygons"
        /// available here: http://liama.ia.ac.cn/wiki/_media/user:dong:dong_cg_05.pdf
        /// Merges two polygons, a subject and a clip with the specified operation. Polygons may not be
        /// self-intersecting.
        ///
        /// Warning: May yield incorrect results or even crash if polygons contain collinear points.
        /// </summary>
        /// <param name="subject">The subject polygon.</param>
        /// <param name="clip">The clip polygon, which is added,
        /// substracted or intersected with the subject</param>
        /// <param name="clipType">The operation to be performed. Either
        /// Union, Difference or Intersection.</param>
        /// <param name="error">The error generated (if any)</param>
        /// <returns>A list of closed polygons, which make up the result of the clipping operation.
        /// Outer contours are ordered counter clockwise, holes are ordered clockwise.</returns>
        private static List <Vertices> Execute(Vertices subject, Vertices clip, PolyClipType clipType, out PolyClipError error)
        {
#if WINDOWS
            Debug.Assert(subject.IsSimple() && clip.IsSimple(), "Non simple input!", "Input polygons must be simple (cannot intersect themselves).");
#endif
            // Copy polygons
            Vertices slicedSubject;
            Vertices slicedClip;
            // Calculate the intersection and touch points between
            // subject and clip and add them to both
            CalculateIntersections(subject, clip, out slicedSubject, out slicedClip);

            // Translate polygons into upper right quadrant
            // as the algorithm depends on it
            Vector2 lbSubject = subject.GetAABB().LowerBound;
            Vector2 lbClip    = clip.GetAABB().LowerBound;
            Vector2 translate;
            Vector2.Min(ref lbSubject, ref lbClip, out translate);
            translate = Vector2.One - translate;
            if (translate != Vector2.Zero)
            {
                slicedSubject.Translate(ref translate);
                slicedClip.Translate(ref translate);
            }

            // Enforce counterclockwise contours
            slicedSubject.ForceCounterClockWise();
            slicedClip.ForceCounterClockWise();

            List <Edge>  subjectSimplices;
            List <float> subjectCoeff;
            List <Edge>  clipSimplices;
            List <float> clipCoeff;
            // Build simplical chains from the polygons and calculate the
            // the corresponding coefficients
            CalculateSimplicalChain(slicedSubject, out subjectCoeff, out subjectSimplices);
            CalculateSimplicalChain(slicedClip, out clipCoeff, out clipSimplices);

            List <Edge> resultSimplices;

            // Determine the characteristics function for all non-original edges
            // in subject and clip simplical chain and combine the edges contributing
            // to the result, depending on the clipType
            CalculateResultChain(subjectCoeff, subjectSimplices, clipCoeff, clipSimplices, clipType,
                                 out resultSimplices);

            List <Vertices> result;
            // Convert result chain back to polygon(s)
            error = BuildPolygonsFromChain(resultSimplices, out result);

            // Reverse the polygon translation from the beginning
            // and remove collinear points from output
            translate *= -1f;
            for (int i = 0; i < result.Count; ++i)
            {
                result[i].Translate(ref translate);
                SimplifyTools.CollinearSimplify(result[i]);
            }
            return(result);
        }
Exemplo n.º 3
0
        private static List <Vertices> Execute(Vertices subject, Vertices clip, PolyClipType clipType, out PolyClipError error)
        {
            Debug.Assert(subject.IsSimple() && clip.IsSimple(), "Non simple input!", "Input polygons must be simple (cannot intersect themselves).");
            Vertices vertices;
            Vertices vertices2;

            YuPengClipper.CalculateIntersections(subject, clip, out vertices, out vertices2);
            TSVector2 lowerBound  = subject.GetAABB().LowerBound;
            TSVector2 lowerBound2 = clip.GetAABB().LowerBound;
            TSVector2 tSVector;

            TSVector2.Min(ref lowerBound, ref lowerBound2, out tSVector);
            tSVector = TSVector2.one - tSVector;
            bool flag = tSVector != TSVector2.zero;

            if (flag)
            {
                vertices.Translate(ref tSVector);
                vertices2.Translate(ref tSVector);
            }
            vertices.ForceCounterClockWise();
            vertices2.ForceCounterClockWise();
            List <FP> poly1Coeff;
            List <YuPengClipper.Edge> poly1Simplicies;

            YuPengClipper.CalculateSimplicalChain(vertices, out poly1Coeff, out poly1Simplicies);
            List <FP> poly2Coeff;
            List <YuPengClipper.Edge> poly2Simplicies;

            YuPengClipper.CalculateSimplicalChain(vertices2, out poly2Coeff, out poly2Simplicies);
            List <YuPengClipper.Edge> simplicies;

            YuPengClipper.CalculateResultChain(poly1Coeff, poly1Simplicies, poly2Coeff, poly2Simplicies, clipType, out simplicies);
            List <Vertices> list;

            error     = YuPengClipper.BuildPolygonsFromChain(simplicies, out list);
            tSVector *= -1f;
            for (int i = 0; i < list.Count; i++)
            {
                list[i].Translate(ref tSVector);
                SimplifyTools.CollinearSimplify(list[i], FP.Zero);
            }
            return(list);
        }
Exemplo n.º 4
0
        /// <summary>
        /// Calculates the result between the subject and clip simplical chains,
        /// based on the provided operation.
        /// </summary>
        /// <remarks>Used by method <c>Execute()</c>.</remarks>
        private static void CalculateResultChain(List <Edge> poly1Simplicies, List <float> poly1Char,
                                                 List <Edge> poly2Simplicies, List <float> poly2Char,
                                                 PolyClipType clipType, out List <Edge> resultSimplices)
        {
            resultSimplices = new List <Edge>();

            for (int i = 0; i < poly1Simplicies.Count; ++i)
            {
                if (clipType == PolyClipType.Intersect)
                {
                    if (poly1Char[i] == 1f)
                    {
                        resultSimplices.Add(poly1Simplicies[i]);
                    }
                }
                else
                {
                    if (poly1Char[i] == 0f)
                    {
                        resultSimplices.Add(poly1Simplicies[i]);
                    }
                }
            }
            for (int i = 0; i < poly2Simplicies.Count; ++i)
            {
                if (clipType == PolyClipType.Intersect || clipType == PolyClipType.Difference)
                {
                    if (poly2Char[i] == 1f)
                    {
                        resultSimplices.Add(-poly2Simplicies[i]);
                    }
                }
                else
                {
                    if (poly2Char[i] == 0f)
                    {
                        resultSimplices.Add(poly2Simplicies[i]);
                    }
                }
            }
        }
Exemplo n.º 5
0
        /// <summary>
        /// Calculates the characteristics function for all edges of
        /// the given simplical chains and builds the result chain.
        /// </summary>
        /// <remarks>Used by method <c>Execute()</c>.</remarks>
        private static void CalculateResultChain(List <FP> poly1Coeff, List <Edge> poly1Simplicies,
                                                 List <FP> poly2Coeff, List <Edge> poly2Simplicies,
                                                 PolyClipType clipType, out List <Edge> resultSimplices)
        {
            resultSimplices = new List <Edge>();

            for (int i = 0; i < poly1Simplicies.Count; ++i)
            {
                FP edgeCharacter = 0;
                if (poly2Simplicies.Contains(poly1Simplicies[i]))
                {
                    edgeCharacter = 1f;
                }
                else if (poly2Simplicies.Contains(-poly1Simplicies[i]) && clipType == PolyClipType.Union)
                {
                    edgeCharacter = 1f;
                }
                else
                {
                    for (int j = 0; j < poly2Simplicies.Count; ++j)
                    {
                        if (!poly2Simplicies.Contains(-poly1Simplicies[i]))
                        {
                            edgeCharacter += CalculateBeta(poly1Simplicies[i].GetCenter(),
                                                           poly2Simplicies[j], poly2Coeff[j]);
                        }
                    }
                }
                if (clipType == PolyClipType.Intersect)
                {
                    if (edgeCharacter == 1f)
                    {
                        resultSimplices.Add(poly1Simplicies[i]);
                    }
                }
                else
                {
                    if (edgeCharacter == 0f)
                    {
                        resultSimplices.Add(poly1Simplicies[i]);
                    }
                }
            }
            for (int i = 0; i < poly2Simplicies.Count; ++i)
            {
                FP edgeCharacter = 0f;
                if (!resultSimplices.Contains(poly2Simplicies[i]) &&
                    !resultSimplices.Contains(-poly2Simplicies[i]))
                {
                    if (poly1Simplicies.Contains(-poly2Simplicies[i]) && clipType == PolyClipType.Union)
                    {
                        edgeCharacter = 1f;
                    }
                    else
                    {
                        edgeCharacter = 0f;
                        for (int j = 0; j < poly1Simplicies.Count; ++j)
                        {
                            if (!poly1Simplicies.Contains(poly2Simplicies[i]) && !poly1Simplicies.Contains(-poly2Simplicies[i]))
                            {
                                edgeCharacter += CalculateBeta(poly2Simplicies[i].GetCenter(),
                                                               poly1Simplicies[j], poly1Coeff[j]);
                            }
                        }
                        if (clipType == PolyClipType.Intersect || clipType == PolyClipType.Difference)
                        {
                            if (edgeCharacter == 1f)
                            {
                                resultSimplices.Add(-poly2Simplicies[i]);
                            }
                        }
                        else
                        {
                            if (edgeCharacter == 0f)
                            {
                                resultSimplices.Add(poly2Simplicies[i]);
                            }
                        }
                    }
                }
            }
        }
        /// <summary>
        /// Calculates the result between the subject and clip simplical chains,
        /// based on the provided operation.
        /// </summary>
        /// <remarks>Used by method <c>Execute()</c>.</remarks>
        private static void CalculateResultChain(List<Edge> poly1Simplicies, List<float> poly1Char,
                                                 List<Edge> poly2Simplicies, List<float> poly2Char,
                                                 PolyClipType clipType, out List<Edge> resultSimplices)
        {
            resultSimplices = new List<Edge>();

            for (int i = 0; i < poly1Simplicies.Count; ++i)
            {
                if (clipType == PolyClipType.Intersect)
                {
                    if (poly1Char[i] == 1f)
                    {
                        resultSimplices.Add(poly1Simplicies[i]);
                    }
                }
                else
                {
                    if (poly1Char[i] == 0f)
                    {
                        resultSimplices.Add(poly1Simplicies[i]);
                    }
                }
            }
            for (int i = 0; i < poly2Simplicies.Count; ++i)
            {
                if (clipType == PolyClipType.Intersect || clipType == PolyClipType.Difference)
                {
                    if (poly2Char[i] == 1f)
                    {
                        resultSimplices.Add(-poly2Simplicies[i]);
                    }
                }
                else
                {
                    if (poly2Char[i] == 0f)
                    {
                        resultSimplices.Add(poly2Simplicies[i]);
                    }
                }
            }
        }
        /// <summary>
        /// Calculates the characteristics function for all edges of
        /// the given simplical chains and builds the result chain.
        /// </summary>
        /// <remarks>Used by method <c>Execute()</c>.</remarks>
        private static void CalculateResultChain(List<float> poly1Coeff, List<Edge> poly1Simplicies,
            List<float> poly2Coeff, List<Edge> poly2Simplicies,
            PolyClipType clipType, out List<Edge> resultSimplices)
        {
            resultSimplices = new List<Edge>();

              for (int i = 0; i < poly1Simplicies.Count; ++i)
              {
            float edgeCharacter = 0;
            if (poly2Simplicies.Contains(poly1Simplicies[i]))
            {
              edgeCharacter = 1f;
            }
            else if (poly2Simplicies.Contains(-poly1Simplicies[i]) && clipType == PolyClipType.Union)
            {
              edgeCharacter = 1f;
            }
            else
            {
              for (int j = 0; j < poly2Simplicies.Count; ++j)
              {
            if (!poly2Simplicies.Contains(-poly1Simplicies[i]))
            {
              edgeCharacter += CalculateBeta(poly1Simplicies[i].GetCenter(),
                                             poly2Simplicies[j], poly2Coeff[j]);
            }
              }
            }
            if (clipType == PolyClipType.Intersect)
            {
              if (edgeCharacter == 1f)
              {
            resultSimplices.Add(poly1Simplicies[i]);
              }
            }
            else
            {
              if (edgeCharacter == 0f)
              {
            resultSimplices.Add(poly1Simplicies[i]);
              }
            }
              }
              for (int i = 0; i < poly2Simplicies.Count; ++i)
              {
            float edgeCharacter = 0f;
            if (!resultSimplices.Contains(poly2Simplicies[i]) &&
            !resultSimplices.Contains(-poly2Simplicies[i]))
            {
              if (poly1Simplicies.Contains(-poly2Simplicies[i]) && clipType == PolyClipType.Union)
              {
            edgeCharacter = 1f;
              }
              else
              {
            edgeCharacter = 0f;
            for (int j = 0; j < poly1Simplicies.Count; ++j)
            {
              if (!poly1Simplicies.Contains(poly2Simplicies[i]) && !poly1Simplicies.Contains(-poly2Simplicies[i]))
              {
                edgeCharacter += CalculateBeta(poly2Simplicies[i].GetCenter(),
                                               poly1Simplicies[j], poly1Coeff[j]);
              }
            }
            if (clipType == PolyClipType.Intersect || clipType == PolyClipType.Difference)
            {
              if (edgeCharacter == 1f)
              {
                resultSimplices.Add(-poly2Simplicies[i]);
              }
            }
            else
            {
              if (edgeCharacter == 0f)
              {
                resultSimplices.Add(poly2Simplicies[i]);
              }
            }
              }
            }
              }
        }
Exemplo n.º 8
0
        /// <summary>Actual algorithm.</summary>
        /// <param name="subject">The subject polygon.</param>
        /// <param name="clip">The clip polygon, which is added, subtracted or intersected with the subject</param>
        /// <param name="clipType">The operation to be performed. Either Union, Difference or Intersection.</param>
        /// <param name="error">The error generated (if any)</param>
        /// <returns>
        ///     A list of closed polygons, which make up the result of the clipping operation. Outer contours are ordered
        ///     counter clockwise, holes are ordered clockwise.
        /// </returns>
        private static List <List <Vector2> > Execute(
            IList <Vector2> subject, IList <Vector2> clip, PolyClipType clipType, out PolyClipError error)
        {
            if (!IsSimple(subject))
            {
                throw new ArgumentException(
                          "Input subject polygon must be simple (cannot intersect themselves).", "subject");
            }
            if (!IsSimple(clip))
            {
                throw new ArgumentException("Input clip polygon must be simple (cannot intersect themselves).", "clip");
            }

            // Copy polygons.
            List <Vector2> slicedSubject;
            List <Vector2> slicedClip;

            // Calculate the intersection and touch points between subject and clip and add them to both.
            CalculateIntersections(subject, clip, out slicedSubject, out slicedClip);

            // Translate polygons into upper right quadrant as the algorithm depends on it.
            var     lbSubject = GetLowerBound(subject);
            var     lbClip    = GetLowerBound(clip);
            Vector2 translate;

            Vector2.Min(ref lbSubject, ref lbClip, out translate);
            translate = Vector2.One - translate;
            if (translate != Vector2.Zero)
            {
                for (int i = 0, count = slicedSubject.Count; i < count; ++i)
                {
                    slicedSubject[i] += translate;
                }
                for (int i = 0, count = slicedClip.Count; i < count; ++i)
                {
                    slicedClip[i] += translate;
                }
            }

            // Enforce counterclockwise contours.
            ForceCounterClockWise(slicedSubject);
            ForceCounterClockWise(slicedClip);

            // Build simplical chains from the polygons and calculate the the corresponding coefficients.
            List <Edge>  subjectSimplices;
            List <float> subjectCoefficient;
            List <Edge>  clipSimplices;
            List <float> clipCoefficient;

            CalculateSimplicalChain(slicedSubject, out subjectCoefficient, out subjectSimplices);
            CalculateSimplicalChain(slicedClip, out clipCoefficient, out clipSimplices);

            // Determine the characteristics function for all non-original edges
            // in subject and clip simplical chain and combine the edges contributing
            // to the result, depending on the clipType
            var resultSimplices = CalculateResultChain(
                subjectCoefficient,
                subjectSimplices,
                clipCoefficient,
                clipSimplices,
                clipType);

            // Convert result chain back to polygon(s).
            List <List <Vector2> > result;

            error = BuildPolygonsFromChain(resultSimplices, out result);

            // Reverse the polygon translation from the beginning
            // and remove collinear points from output
            translate *= -1.0f;
            foreach (var vertices in result)
            {
                for (int i = 0, count = vertices.Count; i < count; ++i)
                {
                    vertices[i] += translate;
                }
                Simplification.CollinearSimplify(vertices);
            }
            return(result);
        }
Exemplo n.º 9
0
        /// <summary>
        ///     Calculates the characteristics function for all edges of the given simplical chains and builds the result
        ///     chain.
        /// </summary>
        private static List <Edge> CalculateResultChain(
            IList <float> poly1Coefficient,
            IList <Edge> poly1Simplices,
            IList <float> poly2Coefficient,
            IList <Edge> poly2Simplices,
            PolyClipType clipType)
        {
            var resultSimplices = new List <Edge>();

            foreach (var simplex in poly1Simplices)
            {
                var edgeCharacter = 0.0f;
                if (poly2Simplices.Contains(simplex) ||
                    (poly2Simplices.Contains(-simplex) && clipType == PolyClipType.Union))
                {
                    edgeCharacter = 1.0f;
                }
                else
                {
                    for (var j = 0; j < poly2Simplices.Count; ++j)
                    {
                        if (!poly2Simplices.Contains(-simplex))
                        {
                            edgeCharacter += CalculateBeta(
                                simplex.GetCenter(), poly2Simplices[j], poly2Coefficient[j]);
                        }
                    }
                }

                switch (clipType)
                {
                case PolyClipType.Intersect:
// ReSharper disable CompareOfFloatsByEqualityOperator
                    if (edgeCharacter == 1.0f)
// ReSharper restore CompareOfFloatsByEqualityOperator
                    {
                        resultSimplices.Add(simplex);
                    }
                    break;

                default:
// ReSharper disable CompareOfFloatsByEqualityOperator
                    if (edgeCharacter == 0.0f)
// ReSharper restore CompareOfFloatsByEqualityOperator
                    {
                        resultSimplices.Add(simplex);
                    }
                    break;
                }
            }

            foreach (var simplex in poly2Simplices)
            {
                if (resultSimplices.Contains(simplex) || resultSimplices.Contains(-simplex))
                {
                    continue;
                }

                var edgeCharacter = 0.0f;
                if (poly1Simplices.Contains(simplex) ||
                    (poly1Simplices.Contains(-simplex) && clipType == PolyClipType.Union))
                {
                    edgeCharacter = 1.0f;
                }
                else
                {
                    for (var j = 0; j < poly1Simplices.Count; ++j)
                    {
                        if (!poly1Simplices.Contains(-simplex))
                        {
                            edgeCharacter += CalculateBeta(
                                simplex.GetCenter(), poly1Simplices[j], poly1Coefficient[j]);
                        }
                    }
                }

                switch (clipType)
                {
                case PolyClipType.Difference:
                case PolyClipType.Intersect:
// ReSharper disable CompareOfFloatsByEqualityOperator
                    if (edgeCharacter == 1.0f)
// ReSharper restore CompareOfFloatsByEqualityOperator
                    {
                        resultSimplices.Add(-simplex);
                    }
                    break;

                default:
// ReSharper disable CompareOfFloatsByEqualityOperator
                    if (edgeCharacter == 0.0f)
// ReSharper restore CompareOfFloatsByEqualityOperator
                    {
                        resultSimplices.Add(simplex);
                    }
                    break;
                }
            }

            return(resultSimplices);
        }
Exemplo n.º 10
0
        /// <summary>
        /// Calculates the characteristics function for all edges of
        /// the given simplical chains and builds the result chain.
        /// </summary>
        /// <remarks>Used by method <c>Execute()</c>.</remarks>
        private static void CalculateResultChain(List<double> poly1Coeff, List<Edge> poly1Simplicies,
            List<double> poly2Coeff, List<Edge> poly2Simplicies,
            PolyClipType clipType, out List<Edge> resultSimplices)
        {
            resultSimplices = new List<Edge>();

            for (int i = 0; i < poly1Simplicies.Count; ++i)
            {
                double edgeCharacter = 0;
                if (poly2Simplicies.Contains(poly1Simplicies[i]) ||
                    (poly2Simplicies.Contains(-poly1Simplicies[i]) && clipType == PolyClipType.Union))
                {
                    edgeCharacter = 1;
                }
                else
                {
                    for (int j = 0; j < poly2Simplicies.Count; ++j)
                    {
                        if (!poly2Simplicies.Contains(-poly1Simplicies[i]))
                        {
                            edgeCharacter += CalculateBeta(poly1Simplicies[i].GetCenter(),
                                                           poly2Simplicies[j], poly2Coeff[j]);
                        }
                    }
                }
                if (clipType == PolyClipType.Intersect)
                {
                    if (Math.Abs(edgeCharacter - 1) < ClipperEpsilonSquared)
                    {
                        resultSimplices.Add(poly1Simplicies[i]);
                    }
                }
                else
                {
                    if (Math.Abs(edgeCharacter - 0) < ClipperEpsilonSquared)
                    {
                        resultSimplices.Add(poly1Simplicies[i]);
                    }
                }
            }
            for (int i = 0; i < poly2Simplicies.Count; ++i)
            {
                if (!resultSimplices.Contains(poly2Simplicies[i]) &&
                    !resultSimplices.Contains(-poly2Simplicies[i]))
                {
                    double edgeCharacter = 0f;
                    if (poly1Simplicies.Contains(poly2Simplicies[i]) ||
                        (poly1Simplicies.Contains(-poly2Simplicies[i]) && clipType == PolyClipType.Union))
                    {
                        edgeCharacter = 1f;
                    }
                    else
                    {
                        for (int j = 0; j < poly1Simplicies.Count; ++j)
                        {
                            if (!poly1Simplicies.Contains(-poly2Simplicies[i]))
                            {
                                edgeCharacter += CalculateBeta(poly2Simplicies[i].GetCenter(),
                                                               poly1Simplicies[j], poly1Coeff[j]);
                            }
                        }
                    }
                    if (clipType == PolyClipType.Intersect || clipType == PolyClipType.Difference)
                    {
                        if (Math.Abs(edgeCharacter - 1) < ClipperEpsilonSquared)
                        {
                            resultSimplices.Add(-poly2Simplicies[i]);
                        }
                    }
                    else
                    {
                        if (Math.Abs(edgeCharacter) < ClipperEpsilonSquared)
                        {
                            resultSimplices.Add(poly2Simplicies[i]);
                        }
                    }
                }
            }
        }
Exemplo n.º 11
0
 private static void CalculateResultChain(List <FP> poly1Coeff, List <YuPengClipper.Edge> poly1Simplicies, List <FP> poly2Coeff, List <YuPengClipper.Edge> poly2Simplicies, PolyClipType clipType, out List <YuPengClipper.Edge> resultSimplices)
 {
     resultSimplices = new List <YuPengClipper.Edge>();
     for (int i = 0; i < poly1Simplicies.Count; i++)
     {
         FP   x    = 0;
         bool flag = poly2Simplicies.Contains(poly1Simplicies[i]);
         if (flag)
         {
             x = 1f;
         }
         else
         {
             bool flag2 = poly2Simplicies.Contains(-poly1Simplicies[i]) && clipType == PolyClipType.Union;
             if (flag2)
             {
                 x = 1f;
             }
             else
             {
                 for (int j = 0; j < poly2Simplicies.Count; j++)
                 {
                     bool flag3 = !poly2Simplicies.Contains(-poly1Simplicies[i]);
                     if (flag3)
                     {
                         x += YuPengClipper.CalculateBeta(poly1Simplicies[i].GetCenter(), poly2Simplicies[j], poly2Coeff[j]);
                     }
                 }
             }
         }
         bool flag4 = clipType == PolyClipType.Intersect;
         if (flag4)
         {
             bool flag5 = x == 1f;
             if (flag5)
             {
                 resultSimplices.Add(poly1Simplicies[i]);
             }
         }
         else
         {
             bool flag6 = x == 0f;
             if (flag6)
             {
                 resultSimplices.Add(poly1Simplicies[i]);
             }
         }
     }
     for (int k = 0; k < poly2Simplicies.Count; k++)
     {
         FP   x2    = 0f;
         bool flag7 = !resultSimplices.Contains(poly2Simplicies[k]) && !resultSimplices.Contains(-poly2Simplicies[k]);
         if (flag7)
         {
             bool flag8 = poly1Simplicies.Contains(-poly2Simplicies[k]) && clipType == PolyClipType.Union;
             if (flag8)
             {
                 x2 = 1f;
             }
             else
             {
                 x2 = 0f;
                 for (int l = 0; l < poly1Simplicies.Count; l++)
                 {
                     bool flag9 = !poly1Simplicies.Contains(poly2Simplicies[k]) && !poly1Simplicies.Contains(-poly2Simplicies[k]);
                     if (flag9)
                     {
                         x2 += YuPengClipper.CalculateBeta(poly2Simplicies[k].GetCenter(), poly1Simplicies[l], poly1Coeff[l]);
                     }
                 }
                 bool flag10 = clipType == PolyClipType.Intersect || clipType == PolyClipType.Difference;
                 if (flag10)
                 {
                     bool flag11 = x2 == 1f;
                     if (flag11)
                     {
                         resultSimplices.Add(-poly2Simplicies[k]);
                     }
                 }
                 else
                 {
                     bool flag12 = x2 == 0f;
                     if (flag12)
                     {
                         resultSimplices.Add(poly2Simplicies[k]);
                     }
                 }
             }
         }
     }
 }