Exemplo n.º 1
0
        public void AdaptiveInvert()
        {
            var maxDelta = 0.001m;

            var deltas = new List <decimal>();

            // Scalability and edge cases
            foreach (var m in testCases)
            {
                Matrix3x3 testCase = m;

                FloatMatrix3x3 floatMatrix = MathConverter.Convert(testCase);
                FloatMatrix3x3 expected;
                FloatMatrix3x3.AdaptiveInvert(ref floatMatrix, out expected);

                Matrix3x3 actual;
                Matrix3x3.AdaptiveInvert(ref testCase, out actual);

                bool success = true;
                foreach (decimal delta in GetDeltas(expected, actual))
                {
                    deltas.Add(delta);
                    success &= delta <= maxDelta;
                }
                Assert.True(success, string.Format("Precision: Matrix3x3Invert({0}): Expected {1} Actual {2}", testCase, expected, actual));
            }
            output.WriteLine("Max error: {0} ({1} times precision)", deltas.Max(), deltas.Max() / Fix64.Precision);
            output.WriteLine("Average precision: {0} ({1} times precision)", deltas.Average(), deltas.Average() / Fix64.Precision);
        }
Exemplo n.º 2
0
        public void BenchmarkAdaptiveInvert()
        {
            var swf = new Stopwatch();
            var swd = new Stopwatch();

            var deltas = new List <decimal>();

            foreach (var m in testCases)
            {
                Matrix3x3 testCase = m;

                for (int i = 0; i < 10000; i++)
                {
                    FloatMatrix3x3 floatMatrix = MathConverter.Convert(testCase);
                    FloatMatrix3x3 expected;
                    swf.Start();
                    FloatMatrix3x3.AdaptiveInvert(ref floatMatrix, out expected);
                    swf.Stop();


                    Matrix3x3 actual;
                    swd.Start();
                    Matrix3x3.AdaptiveInvert(ref testCase, out actual);
                    swd.Stop();

                    foreach (decimal delta in GetDeltas(expected, actual))
                    {
                        deltas.Add(delta);
                    }
                }
            }
            output.WriteLine("Max error: {0} ({1} times precision)", deltas.Max(), deltas.Max() / Fix64.Precision);
            output.WriteLine("Average precision: {0} ({1} times precision)", deltas.Average(), deltas.Average() / Fix64.Precision);
            output.WriteLine("Fix64.AdaptiveInvert time = {0}ms, float.AdaptiveInvert time = {1}ms", swf.ElapsedMilliseconds, swd.ElapsedMilliseconds);
        }
Exemplo n.º 3
0
        protected internal override void ComputeEffectiveMass()
        {
            //For all constraints, the effective mass matrix is 1 / (J * M^-1 * JT).
            //For single bone constraints, J has 2 3x3 matrices. M^-1 (W below) is a 6x6 matrix with 2 3x3 block diagonal matrices.
            //To compute the whole denominator,
            Matrix3x3 linearW;

            Matrix3x3.CreateScale(TargetBone.inverseMass, out linearW);
            Matrix3x3 linear;

            Matrix3x3.Multiply(ref linearJacobian, ref linearW, out linear); //Compute J * M^-1 for linear component
            Matrix3x3.MultiplyByTransposed(ref linear, ref linearJacobian,
                                           out linear);                      //Compute (J * M^-1) * JT for linear component

            Matrix3x3 angular;

            Matrix3x3.Multiply(ref angularJacobian, ref TargetBone.inertiaTensorInverse,
                               out angular);             //Compute J * M^-1 for angular component
            Matrix3x3.MultiplyByTransposed(ref angular, ref angularJacobian,
                                           out angular); //Compute (J * M^-1) * JT for angular component

            //A nice side effect of the block diagonal nature of M^-1 is that the above separated components are now combined into the complete denominator matrix by addition!
            Matrix3x3.Add(ref linear, ref angular, out effectiveMass);

            //Incorporate the constraint softness into the effective mass denominator. This pushes the matrix away from singularity.
            //Softness will also be incorporated into the velocity solve iterations to complete the implementation.
            if (effectiveMass.M11 != 0)
            {
                effectiveMass.M11 += softness;
            }

            if (effectiveMass.M22 != 0)
            {
                effectiveMass.M22 += softness;
            }

            if (effectiveMass.M33 != 0)
            {
                effectiveMass.M33 += softness;
            }

            //Invert! Takes us from J * M^-1 * JT to 1 / (J * M^-1 * JT).
            Matrix3x3.AdaptiveInvert(ref effectiveMass, out effectiveMass);
        }
Exemplo n.º 4
0
        protected internal override void ComputeEffectiveMass()
        {
            //For all constraints, the effective mass matrix is 1 / (J * M^-1 * JT).
            //For two bone constraints, J has 4 3x3 matrices. M^-1 (W below) is a 12x12 matrix with 4 3x3 block diagonal matrices.
            //To compute the whole denominator,
            Matrix3x3 linearW;
            Matrix3x3 linearA, angularA, linearB, angularB;

            if (!ConnectionA.Pinned)
            {
                Matrix3x3.CreateScale(ConnectionA.inverseMass, out linearW);
                Matrix3x3.Multiply(ref linearJacobianA, ref linearW, out linearA);                            //Compute J * M^-1 for linear component
                Matrix3x3.MultiplyByTransposed(ref linearA, ref linearJacobianA, out linearA);                //Compute (J * M^-1) * JT for linear component

                Matrix3x3.Multiply(ref angularJacobianA, ref ConnectionA.inertiaTensorInverse, out angularA); //Compute J * M^-1 for angular component
                Matrix3x3.MultiplyByTransposed(ref angularA, ref angularJacobianA, out angularA);             //Compute (J * M^-1) * JT for angular component
            }
            else
            {
                //Treat pinned bones as if they have infinite inertia.
                linearA  = new Matrix3x3();
                angularA = new Matrix3x3();
            }

            if (!ConnectionB.Pinned)
            {
                Matrix3x3.CreateScale(ConnectionB.inverseMass, out linearW);
                Matrix3x3.Multiply(ref linearJacobianB, ref linearW, out linearB);                            //Compute J * M^-1 for linear component
                Matrix3x3.MultiplyByTransposed(ref linearB, ref linearJacobianB, out linearB);                //Compute (J * M^-1) * JT for linear component

                Matrix3x3.Multiply(ref angularJacobianB, ref ConnectionB.inertiaTensorInverse, out angularB); //Compute J * M^-1 for angular component
                Matrix3x3.MultiplyByTransposed(ref angularB, ref angularJacobianB, out angularB);             //Compute (J * M^-1) * JT for angular component
            }
            else
            {
                //Treat pinned bones as if they have infinite inertia.
                linearB  = new Matrix3x3();
                angularB = new Matrix3x3();
            }

            //A nice side effect of the block diagonal nature of M^-1 is that the above separated components are now combined into the complete denominator matrix by addition!
            Matrix3x3.Add(ref linearA, ref angularA, out effectiveMass);
            Matrix3x3.Add(ref effectiveMass, ref linearB, out effectiveMass);
            Matrix3x3.Add(ref effectiveMass, ref angularB, out effectiveMass);

            //Incorporate the constraint softness into the effective mass denominator. This pushes the matrix away from singularity.
            //Softness will also be incorporated into the velocity solve iterations to complete the implementation.
            if (effectiveMass.M11 != 0)
            {
                effectiveMass.M11 += softness;
            }
            if (effectiveMass.M22 != 0)
            {
                effectiveMass.M22 += softness;
            }
            if (effectiveMass.M33 != 0)
            {
                effectiveMass.M33 += softness;
            }

            //Invert! Takes us from J * M^-1 * JT to 1 / (J * M^-1 * JT).
            Matrix3x3.AdaptiveInvert(ref effectiveMass, out effectiveMass);
        }