/// <summary>
        /// Non-linear least square fitting by the Levenberg-Marduardt algorithm.
        /// </summary>
        /// <param name="objective">The objective function, including model, observations, and parameter bounds.</param>
        /// <param name="initialGuess">The initial guess values.</param>
        /// <param name="initialMu">The initial damping parameter of mu.</param>
        /// <param name="gradientTolerance">The stopping threshold for infinity norm of the gradient vector.</param>
        /// <param name="stepTolerance">The stopping threshold for L2 norm of the change of parameters.</param>
        /// <param name="functionTolerance">The stopping threshold for L2 norm of the residuals.</param>
        /// <param name="maximumIterations">The max iterations.</param>
        /// <returns>The result of the Levenberg-Marquardt minimization</returns>
        public static NonlinearMinimizationResult Minimum(IObjectiveModel objective, Vector <double> initialGuess,
                                                          Vector <double> lowerBound = null, Vector <double> upperBound = null, Vector <double> scales = null, List <bool> isFixed      = null,
                                                          double initialMu           = 1E-3, double gradientTolerance   = 1E-15, double stepTolerance = 1E-15, double functionTolerance = 1E-15, int maximumIterations = -1)
        {
            // Non-linear least square fitting by the Levenberg-Marduardt algorithm.
            //
            // Levenberg-Marquardt is finding the minimum of a function F(p) that is a sum of squares of nonlinear functions.
            //
            // For given datum pair (x, y), uncertainties σ (or weighting W  =  1 / σ^2) and model function f = f(x; p),
            // let's find the parameters of the model so that the sum of the quares of the deviations is minimized.
            //
            //    F(p) = 1/2 * ∑{ Wi * (yi - f(xi; p))^2 }
            //    pbest = argmin F(p)
            //
            // We will use the following terms:
            //    Weighting W is the diagonal matrix and can be decomposed as LL', so L = 1/σ
            //    Residuals, R = L(y - f(x; p))
            //    Residual sum of squares, RSS = ||R||^2 = R.DotProduct(R)
            //    Jacobian J = df(x; p)/dp
            //    Gradient g = -J'W(y − f(x; p)) = -J'LR
            //    Approximated Hessian H = J'WJ
            //
            // The Levenberg-Marquardt algorithm is summarized as follows:
            //    initially let μ = τ * max(diag(H)).
            //    repeat
            //       solve linear equations: (H + μI)ΔP = -g
            //       let ρ = (||R||^2 - ||Rnew||^2) / (Δp'(μΔp - g)).
            //       if ρ > ε, P = P + ΔP; μ = μ * max(1/3, 1 - (2ρ - 1)^3); ν = 2;
            //       otherwise μ = μ*ν; ν = 2*ν;
            //
            // References:
            // [1]. Madsen, K., H. B. Nielsen, and O. Tingleff.
            //    "Methods for Non-Linear Least Squares Problems. Technical University of Denmark, 2004. Lecture notes." (2004).
            //    Available Online from: http://orbit.dtu.dk/files/2721358/imm3215.pdf
            // [2]. Gavin, Henri.
            //    "The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems."
            //    Department of Civil and Environmental Engineering, Duke University (2017): 1-19.
            //    Availble Online from: http://people.duke.edu/~hpgavin/ce281/lm.pdf

            if (objective == null)
            {
                throw new ArgumentNullException("objective");
            }

            ValidateBounds(initialGuess, lowerBound, upperBound, scales);

            objective.SetParameters(initialGuess, isFixed);

            ExitCondition exitCondition = ExitCondition.None;

            // First, calculate function values and setup variables
            var P     = ProjectToInternalParameters(initialGuess); // current internal parameters
            var Pstep = Vector <double> .Build.Dense(P.Count);     // the change of parameters

            var RSS = EvaluateFunction(objective, P);              // Residual Sum of Squares = R'R

            if (maximumIterations < 0)
            {
                maximumIterations = 200 * (initialGuess.Count + 1);
            }

            // if RSS == NaN, stop
            if (double.IsNaN(RSS))
            {
                exitCondition = ExitCondition.InvalidValues;
                return(new NonlinearMinimizationResult(objective, -1, exitCondition));
            }

            // When only function evaluation is needed, set maximumIterations to zero,
            if (maximumIterations == 0)
            {
                exitCondition = ExitCondition.ManuallyStopped;
            }

            // if RSS <= fTol, stop
            if (RSS <= functionTolerance)
            {
                exitCondition = ExitCondition.Converged; // SmallRSS
            }

            // Evaluate gradient and Hessian
            var jac               = EvaluateJacobian(objective, P);
            var Gradient          = jac.Item1;          // objective.Gradient;
            var Hessian           = jac.Item2;          // objective.Hessian;
            var diagonalOfHessian = Hessian.Diagonal(); // diag(H)

            // if ||g||oo <= gtol, found and stop
            if (Gradient.InfinityNorm() <= gradientTolerance)
            {
                exitCondition = ExitCondition.RelativeGradient;
            }

            if (exitCondition != ExitCondition.None)
            {
                return(new NonlinearMinimizationResult(objective, -1, exitCondition));
            }

            double mu         = initialMu * diagonalOfHessian.Max(); // μ
            double nu         = 2;                                   //  ν
            int    iterations = 0;

            while (iterations < maximumIterations && exitCondition == ExitCondition.None)
            {
                iterations++;

                while (true)
                {
                    Hessian.SetDiagonal(Hessian.Diagonal() + mu); // hessian[i, i] = hessian[i, i] + mu;

                    // solve normal equations
                    Pstep = Hessian.Solve(-Gradient);

                    // if ||ΔP|| <= xTol * (||P|| + xTol), found and stop
                    if (Pstep.L2Norm() <= stepTolerance * (stepTolerance + P.DotProduct(P)))
                    {
                        exitCondition = ExitCondition.RelativePoints;
                        break;
                    }

                    var Pnew = P + Pstep; // new parameters to test
                    // evaluate function at Pnew
                    var RSSnew = EvaluateFunction(objective, Pnew);

                    if (double.IsNaN(RSSnew))
                    {
                        exitCondition = ExitCondition.InvalidValues;
                        break;
                    }

                    // calculate the ratio of the actual to the predicted reduction.
                    // ρ = (RSS - RSSnew) / (Δp'(μΔp - g))
                    var predictedReduction = Pstep.DotProduct(mu * Pstep - Gradient);
                    var rho = (predictedReduction != 0)
                            ? (RSS - RSSnew) / predictedReduction
                            : 0;

                    if (rho > 0.0)
                    {
                        // accepted
                        Pnew.CopyTo(P);
                        RSS = RSSnew;

                        // update gradient and Hessian
                        jac               = EvaluateJacobian(objective, P);
                        Gradient          = jac.Item1; // objective.Gradient;
                        Hessian           = jac.Item2; // objective.Hessian;
                        diagonalOfHessian = Hessian.Diagonal();

                        // if ||g||_oo <= gtol, found and stop
                        if (Gradient.InfinityNorm() <= gradientTolerance)
                        {
                            exitCondition = ExitCondition.RelativeGradient;
                        }

                        // if ||R||^2 < fTol, found and stop
                        if (RSS <= functionTolerance)
                        {
                            exitCondition = ExitCondition.Converged; // SmallRSS
                        }

                        mu = mu * Math.Max(1.0 / 3.0, 1.0 - Math.Pow(2.0 * rho - 1.0, 3));
                        nu = 2;

                        break;
                    }
                    else
                    {
                        // rejected, increased μ
                        mu = mu * nu;
                        nu = 2 * nu;

                        Hessian.SetDiagonal(diagonalOfHessian);
                    }
                }
            }

            if (iterations >= maximumIterations)
            {
                exitCondition = ExitCondition.ExceedIterations;
            }

            return(new NonlinearMinimizationResult(objective, iterations, exitCondition));
        }
Exemplo n.º 2
0
        /// <summary>
        /// Non-linear least square fitting by the trust-region algorithm.
        /// </summary>
        /// <param name="objective">The objective model, including function, jacobian, observations, and parameter bounds.</param>
        /// <param name="subproblem">The subproblem</param>
        /// <param name="initialGuess">The initial guess values.</param>
        /// <param name="functionTolerance">The stopping threshold for L2 norm of the residuals.</param>
        /// <param name="gradientTolerance">The stopping threshold for infinity norm of the gradient vector.</param>
        /// <param name="stepTolerance">The stopping threshold for L2 norm of the change of parameters.</param>
        /// <param name="radiusTolerance">The stopping threshold for trust region radius</param>
        /// <param name="maximumIterations">The max iterations.</param>
        /// <returns></returns>
        public static NonlinearMinimizationResult Minimum(ITrustRegionSubproblem subproblem, IObjectiveModel objective, Vector <double> initialGuess,
                                                          Vector <double> lowerBound = null, Vector <double> upperBound = null, Vector <double> scales   = null, List <bool> isFixed    = null,
                                                          double gradientTolerance   = 1E-8, double stepTolerance       = 1E-8, double functionTolerance = 1E-8, double radiusTolerance = 1E-18, int maximumIterations = -1)
        {
            // Non-linear least square fitting by the trust-region algorithm.
            //
            // For given datum pair (x, y), uncertainties σ (or weighting W  =  1 / σ^2) and model function f = f(x; p),
            // let's find the parameters of the model so that the sum of the quares of the deviations is minimized.
            //
            //    F(p) = 1/2 * ∑{ Wi * (yi - f(xi; p))^2 }
            //    pbest = argmin F(p)
            //
            // Here, we will use the following terms:
            //    Weighting W is the diagonal matrix and can be decomposed as LL', so L = 1/σ
            //    Residuals, R = L(y - f(x; p))
            //    Residual sum of squares, RSS = ||R||^2 = R.DotProduct(R)
            //    Jacobian J = df(x; p)/dp
            //    Gradient g = -J'W(y − f(x; p)) = -J'LR
            //    Approximated Hessian H = J'WJ
            //
            // The trust region algorithm is summarized as follows:
            //    initially set trust-region radius, Δ
            //    repeat
            //       solve subproblem
            //       update Δ:
            //          let ρ = (RSS - RSSnew) / predRed
            //          if ρ > 0.75, Δ = 2Δ
            //          if ρ < 0.25, Δ = Δ/4
            //          if ρ > eta, P = P + ΔP
            //
            // References:
            // [1]. Madsen, K., H. B. Nielsen, and O. Tingleff.
            //    "Methods for Non-Linear Least Squares Problems. Technical University of Denmark, 2004. Lecture notes." (2004).
            //    Available Online from: http://orbit.dtu.dk/files/2721358/imm3215.pdf
            // [2]. Nocedal, Jorge, and Stephen J. Wright.
            //    Numerical optimization (2006): 101-134.
            // [3]. SciPy
            //    Available Online from: https://github.com/scipy/scipy/blob/master/scipy/optimize/_trustregion.py

            double maxDelta = 1000;
            double eta      = 0;

            if (objective == null)
            {
                throw new ArgumentNullException("objective");
            }

            ValidateBounds(initialGuess, lowerBound, upperBound, scales);

            objective.SetParameters(initialGuess, isFixed);

            ExitCondition exitCondition = ExitCondition.None;

            // First, calculate function values and setup variables
            var P     = ProjectToInternalParameters(initialGuess); // current internal parameters
            var Pstep = Vector <double> .Build.Dense(P.Count);     // the change of parameters

            var RSS = EvaluateFunction(objective, initialGuess);   // Residual Sum of Squares

            if (maximumIterations < 0)
            {
                maximumIterations = 200 * (initialGuess.Count + 1);
            }

            // if RSS == NaN, stop
            if (double.IsNaN(RSS))
            {
                exitCondition = ExitCondition.InvalidValues;
                return(new NonlinearMinimizationResult(objective, -1, exitCondition));
            }

            // When only function evaluation is needed, set maximumIterations to zero,
            if (maximumIterations == 0)
            {
                exitCondition = ExitCondition.ManuallyStopped;
            }

            // if ||R||^2 <= fTol, stop
            if (RSS <= functionTolerance)
            {
                exitCondition = ExitCondition.Converged; // SmallRSS
            }

            // evaluate projected gradient and Hessian
            var jac      = EvaluateJacobian(objective, P);
            var Gradient = jac.Item1; // objective.Gradient;
            var Hessian  = jac.Item2; // objective.Hessian;

            // if ||g||_oo <= gtol, found and stop
            if (Gradient.InfinityNorm() <= gradientTolerance)
            {
                exitCondition = ExitCondition.RelativeGradient; // SmallGradient
            }

            if (exitCondition != ExitCondition.None)
            {
                return(new NonlinearMinimizationResult(objective, -1, exitCondition));
            }

            // initialize trust-region radius, Δ
            double delta = Gradient.DotProduct(Gradient) / (Hessian * Gradient).DotProduct(Gradient);

            delta = Math.Max(1.0, Math.Min(delta, maxDelta));

            int  iterations  = 0;
            bool hitBoundary = false;

            while (iterations < maximumIterations && exitCondition == ExitCondition.None)
            {
                iterations++;

                // solve the subproblem
                subproblem.Solve(objective, delta);
                Pstep       = subproblem.Pstep;
                hitBoundary = subproblem.HitBoundary;

                // predicted reduction = L(0) - L(Δp) = -Δp'g - 1/2 * Δp'HΔp
                var predictedReduction = -Gradient.DotProduct(Pstep) - 0.5 * Pstep.DotProduct(Hessian * Pstep);

                if (Pstep.L2Norm() <= stepTolerance * (stepTolerance + P.L2Norm()))
                {
                    exitCondition = ExitCondition.RelativePoints; // SmallRelativeParameters
                    break;
                }

                var Pnew = P + Pstep; // parameters to test
                // evaluate function at Pnew
                var RSSnew = EvaluateFunction(objective, Pnew);

                // if RSS == NaN, stop
                if (double.IsNaN(RSSnew))
                {
                    exitCondition = ExitCondition.InvalidValues;
                    break;
                }

                // calculate the ratio of the actual to the predicted reduction.
                double rho = (predictedReduction != 0)
                        ? (RSS - RSSnew) / predictedReduction
                        : 0.0;

                if (rho > 0.75 && hitBoundary)
                {
                    delta = Math.Min(2.0 * delta, maxDelta);
                }
                else if (rho < 0.25)
                {
                    delta = delta * 0.25;
                    if (delta <= radiusTolerance * (radiusTolerance + P.DotProduct(P)))
                    {
                        exitCondition = ExitCondition.LackOfProgress;
                        break;
                    }
                }

                if (rho > eta)
                {
                    // accepted
                    Pnew.CopyTo(P);
                    RSS = RSSnew;

                    // evaluate projected gradient and Hessian
                    jac      = EvaluateJacobian(objective, P);
                    Gradient = jac.Item1; // objective.Gradient;
                    Hessian  = jac.Item2; // objective.Hessian;

                    // if ||g||_oo <= gtol, found and stop
                    if (Gradient.InfinityNorm() <= gradientTolerance)
                    {
                        exitCondition = ExitCondition.RelativeGradient;
                    }

                    // if ||R||^2 < fTol, found and stop
                    if (RSS <= functionTolerance)
                    {
                        exitCondition = ExitCondition.Converged; // SmallRSS
                    }
                }
            }

            if (iterations >= maximumIterations)
            {
                exitCondition = ExitCondition.ExceedIterations;
            }

            return(new NonlinearMinimizationResult(objective, iterations, exitCondition));
        }