/// <summary> /// Non-linear least square fitting by the Levenberg-Marduardt algorithm. /// </summary> /// <param name="objective">The objective function, including model, observations, and parameter bounds.</param> /// <param name="initialGuess">The initial guess values.</param> /// <param name="initialMu">The initial damping parameter of mu.</param> /// <param name="gradientTolerance">The stopping threshold for infinity norm of the gradient vector.</param> /// <param name="stepTolerance">The stopping threshold for L2 norm of the change of parameters.</param> /// <param name="functionTolerance">The stopping threshold for L2 norm of the residuals.</param> /// <param name="maximumIterations">The max iterations.</param> /// <returns>The result of the Levenberg-Marquardt minimization</returns> public static NonlinearMinimizationResult Minimum(IObjectiveModel objective, Vector <double> initialGuess, Vector <double> lowerBound = null, Vector <double> upperBound = null, Vector <double> scales = null, List <bool> isFixed = null, double initialMu = 1E-3, double gradientTolerance = 1E-15, double stepTolerance = 1E-15, double functionTolerance = 1E-15, int maximumIterations = -1) { // Non-linear least square fitting by the Levenberg-Marduardt algorithm. // // Levenberg-Marquardt is finding the minimum of a function F(p) that is a sum of squares of nonlinear functions. // // For given datum pair (x, y), uncertainties σ (or weighting W = 1 / σ^2) and model function f = f(x; p), // let's find the parameters of the model so that the sum of the quares of the deviations is minimized. // // F(p) = 1/2 * ∑{ Wi * (yi - f(xi; p))^2 } // pbest = argmin F(p) // // We will use the following terms: // Weighting W is the diagonal matrix and can be decomposed as LL', so L = 1/σ // Residuals, R = L(y - f(x; p)) // Residual sum of squares, RSS = ||R||^2 = R.DotProduct(R) // Jacobian J = df(x; p)/dp // Gradient g = -J'W(y − f(x; p)) = -J'LR // Approximated Hessian H = J'WJ // // The Levenberg-Marquardt algorithm is summarized as follows: // initially let μ = τ * max(diag(H)). // repeat // solve linear equations: (H + μI)ΔP = -g // let ρ = (||R||^2 - ||Rnew||^2) / (Δp'(μΔp - g)). // if ρ > ε, P = P + ΔP; μ = μ * max(1/3, 1 - (2ρ - 1)^3); ν = 2; // otherwise μ = μ*ν; ν = 2*ν; // // References: // [1]. Madsen, K., H. B. Nielsen, and O. Tingleff. // "Methods for Non-Linear Least Squares Problems. Technical University of Denmark, 2004. Lecture notes." (2004). // Available Online from: http://orbit.dtu.dk/files/2721358/imm3215.pdf // [2]. Gavin, Henri. // "The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems." // Department of Civil and Environmental Engineering, Duke University (2017): 1-19. // Availble Online from: http://people.duke.edu/~hpgavin/ce281/lm.pdf if (objective == null) { throw new ArgumentNullException("objective"); } ValidateBounds(initialGuess, lowerBound, upperBound, scales); objective.SetParameters(initialGuess, isFixed); ExitCondition exitCondition = ExitCondition.None; // First, calculate function values and setup variables var P = ProjectToInternalParameters(initialGuess); // current internal parameters var Pstep = Vector <double> .Build.Dense(P.Count); // the change of parameters var RSS = EvaluateFunction(objective, P); // Residual Sum of Squares = R'R if (maximumIterations < 0) { maximumIterations = 200 * (initialGuess.Count + 1); } // if RSS == NaN, stop if (double.IsNaN(RSS)) { exitCondition = ExitCondition.InvalidValues; return(new NonlinearMinimizationResult(objective, -1, exitCondition)); } // When only function evaluation is needed, set maximumIterations to zero, if (maximumIterations == 0) { exitCondition = ExitCondition.ManuallyStopped; } // if RSS <= fTol, stop if (RSS <= functionTolerance) { exitCondition = ExitCondition.Converged; // SmallRSS } // Evaluate gradient and Hessian var jac = EvaluateJacobian(objective, P); var Gradient = jac.Item1; // objective.Gradient; var Hessian = jac.Item2; // objective.Hessian; var diagonalOfHessian = Hessian.Diagonal(); // diag(H) // if ||g||oo <= gtol, found and stop if (Gradient.InfinityNorm() <= gradientTolerance) { exitCondition = ExitCondition.RelativeGradient; } if (exitCondition != ExitCondition.None) { return(new NonlinearMinimizationResult(objective, -1, exitCondition)); } double mu = initialMu * diagonalOfHessian.Max(); // μ double nu = 2; // ν int iterations = 0; while (iterations < maximumIterations && exitCondition == ExitCondition.None) { iterations++; while (true) { Hessian.SetDiagonal(Hessian.Diagonal() + mu); // hessian[i, i] = hessian[i, i] + mu; // solve normal equations Pstep = Hessian.Solve(-Gradient); // if ||ΔP|| <= xTol * (||P|| + xTol), found and stop if (Pstep.L2Norm() <= stepTolerance * (stepTolerance + P.DotProduct(P))) { exitCondition = ExitCondition.RelativePoints; break; } var Pnew = P + Pstep; // new parameters to test // evaluate function at Pnew var RSSnew = EvaluateFunction(objective, Pnew); if (double.IsNaN(RSSnew)) { exitCondition = ExitCondition.InvalidValues; break; } // calculate the ratio of the actual to the predicted reduction. // ρ = (RSS - RSSnew) / (Δp'(μΔp - g)) var predictedReduction = Pstep.DotProduct(mu * Pstep - Gradient); var rho = (predictedReduction != 0) ? (RSS - RSSnew) / predictedReduction : 0; if (rho > 0.0) { // accepted Pnew.CopyTo(P); RSS = RSSnew; // update gradient and Hessian jac = EvaluateJacobian(objective, P); Gradient = jac.Item1; // objective.Gradient; Hessian = jac.Item2; // objective.Hessian; diagonalOfHessian = Hessian.Diagonal(); // if ||g||_oo <= gtol, found and stop if (Gradient.InfinityNorm() <= gradientTolerance) { exitCondition = ExitCondition.RelativeGradient; } // if ||R||^2 < fTol, found and stop if (RSS <= functionTolerance) { exitCondition = ExitCondition.Converged; // SmallRSS } mu = mu * Math.Max(1.0 / 3.0, 1.0 - Math.Pow(2.0 * rho - 1.0, 3)); nu = 2; break; } else { // rejected, increased μ mu = mu * nu; nu = 2 * nu; Hessian.SetDiagonal(diagonalOfHessian); } } } if (iterations >= maximumIterations) { exitCondition = ExitCondition.ExceedIterations; } return(new NonlinearMinimizationResult(objective, iterations, exitCondition)); }
/// <summary> /// Non-linear least square fitting by the trust-region algorithm. /// </summary> /// <param name="objective">The objective model, including function, jacobian, observations, and parameter bounds.</param> /// <param name="subproblem">The subproblem</param> /// <param name="initialGuess">The initial guess values.</param> /// <param name="functionTolerance">The stopping threshold for L2 norm of the residuals.</param> /// <param name="gradientTolerance">The stopping threshold for infinity norm of the gradient vector.</param> /// <param name="stepTolerance">The stopping threshold for L2 norm of the change of parameters.</param> /// <param name="radiusTolerance">The stopping threshold for trust region radius</param> /// <param name="maximumIterations">The max iterations.</param> /// <returns></returns> public static NonlinearMinimizationResult Minimum(ITrustRegionSubproblem subproblem, IObjectiveModel objective, Vector <double> initialGuess, Vector <double> lowerBound = null, Vector <double> upperBound = null, Vector <double> scales = null, List <bool> isFixed = null, double gradientTolerance = 1E-8, double stepTolerance = 1E-8, double functionTolerance = 1E-8, double radiusTolerance = 1E-18, int maximumIterations = -1) { // Non-linear least square fitting by the trust-region algorithm. // // For given datum pair (x, y), uncertainties σ (or weighting W = 1 / σ^2) and model function f = f(x; p), // let's find the parameters of the model so that the sum of the quares of the deviations is minimized. // // F(p) = 1/2 * ∑{ Wi * (yi - f(xi; p))^2 } // pbest = argmin F(p) // // Here, we will use the following terms: // Weighting W is the diagonal matrix and can be decomposed as LL', so L = 1/σ // Residuals, R = L(y - f(x; p)) // Residual sum of squares, RSS = ||R||^2 = R.DotProduct(R) // Jacobian J = df(x; p)/dp // Gradient g = -J'W(y − f(x; p)) = -J'LR // Approximated Hessian H = J'WJ // // The trust region algorithm is summarized as follows: // initially set trust-region radius, Δ // repeat // solve subproblem // update Δ: // let ρ = (RSS - RSSnew) / predRed // if ρ > 0.75, Δ = 2Δ // if ρ < 0.25, Δ = Δ/4 // if ρ > eta, P = P + ΔP // // References: // [1]. Madsen, K., H. B. Nielsen, and O. Tingleff. // "Methods for Non-Linear Least Squares Problems. Technical University of Denmark, 2004. Lecture notes." (2004). // Available Online from: http://orbit.dtu.dk/files/2721358/imm3215.pdf // [2]. Nocedal, Jorge, and Stephen J. Wright. // Numerical optimization (2006): 101-134. // [3]. SciPy // Available Online from: https://github.com/scipy/scipy/blob/master/scipy/optimize/_trustregion.py double maxDelta = 1000; double eta = 0; if (objective == null) { throw new ArgumentNullException("objective"); } ValidateBounds(initialGuess, lowerBound, upperBound, scales); objective.SetParameters(initialGuess, isFixed); ExitCondition exitCondition = ExitCondition.None; // First, calculate function values and setup variables var P = ProjectToInternalParameters(initialGuess); // current internal parameters var Pstep = Vector <double> .Build.Dense(P.Count); // the change of parameters var RSS = EvaluateFunction(objective, initialGuess); // Residual Sum of Squares if (maximumIterations < 0) { maximumIterations = 200 * (initialGuess.Count + 1); } // if RSS == NaN, stop if (double.IsNaN(RSS)) { exitCondition = ExitCondition.InvalidValues; return(new NonlinearMinimizationResult(objective, -1, exitCondition)); } // When only function evaluation is needed, set maximumIterations to zero, if (maximumIterations == 0) { exitCondition = ExitCondition.ManuallyStopped; } // if ||R||^2 <= fTol, stop if (RSS <= functionTolerance) { exitCondition = ExitCondition.Converged; // SmallRSS } // evaluate projected gradient and Hessian var jac = EvaluateJacobian(objective, P); var Gradient = jac.Item1; // objective.Gradient; var Hessian = jac.Item2; // objective.Hessian; // if ||g||_oo <= gtol, found and stop if (Gradient.InfinityNorm() <= gradientTolerance) { exitCondition = ExitCondition.RelativeGradient; // SmallGradient } if (exitCondition != ExitCondition.None) { return(new NonlinearMinimizationResult(objective, -1, exitCondition)); } // initialize trust-region radius, Δ double delta = Gradient.DotProduct(Gradient) / (Hessian * Gradient).DotProduct(Gradient); delta = Math.Max(1.0, Math.Min(delta, maxDelta)); int iterations = 0; bool hitBoundary = false; while (iterations < maximumIterations && exitCondition == ExitCondition.None) { iterations++; // solve the subproblem subproblem.Solve(objective, delta); Pstep = subproblem.Pstep; hitBoundary = subproblem.HitBoundary; // predicted reduction = L(0) - L(Δp) = -Δp'g - 1/2 * Δp'HΔp var predictedReduction = -Gradient.DotProduct(Pstep) - 0.5 * Pstep.DotProduct(Hessian * Pstep); if (Pstep.L2Norm() <= stepTolerance * (stepTolerance + P.L2Norm())) { exitCondition = ExitCondition.RelativePoints; // SmallRelativeParameters break; } var Pnew = P + Pstep; // parameters to test // evaluate function at Pnew var RSSnew = EvaluateFunction(objective, Pnew); // if RSS == NaN, stop if (double.IsNaN(RSSnew)) { exitCondition = ExitCondition.InvalidValues; break; } // calculate the ratio of the actual to the predicted reduction. double rho = (predictedReduction != 0) ? (RSS - RSSnew) / predictedReduction : 0.0; if (rho > 0.75 && hitBoundary) { delta = Math.Min(2.0 * delta, maxDelta); } else if (rho < 0.25) { delta = delta * 0.25; if (delta <= radiusTolerance * (radiusTolerance + P.DotProduct(P))) { exitCondition = ExitCondition.LackOfProgress; break; } } if (rho > eta) { // accepted Pnew.CopyTo(P); RSS = RSSnew; // evaluate projected gradient and Hessian jac = EvaluateJacobian(objective, P); Gradient = jac.Item1; // objective.Gradient; Hessian = jac.Item2; // objective.Hessian; // if ||g||_oo <= gtol, found and stop if (Gradient.InfinityNorm() <= gradientTolerance) { exitCondition = ExitCondition.RelativeGradient; } // if ||R||^2 < fTol, found and stop if (RSS <= functionTolerance) { exitCondition = ExitCondition.Converged; // SmallRSS } } } if (iterations >= maximumIterations) { exitCondition = ExitCondition.ExceedIterations; } return(new NonlinearMinimizationResult(objective, iterations, exitCondition)); }