private void GenerateTerrain(int gx, int gy) { FP x = gx * this.CellSize; FP fP = gy * this.CellSize; List <Vertices> list = MarchingSquares.DetectSquares(new AABB(new TSVector2(x, fP), new TSVector2(x + this.CellSize, fP + this.CellSize)), this.SubCellSize, this.SubCellSize, this._terrainMap, this.Iterations, true); bool flag = list.Count == 0; if (!flag) { this._bodyMap[gx, gy] = new List <Body>(); TSVector2 tSVector = new TSVector2(1f / (float)this.PointsPerUnit, 1f / (float)(-(float)this.PointsPerUnit)); foreach (Vertices current in list) { current.Scale(ref tSVector); current.Translate(ref this._topLeft); Vertices vertices = SimplifyTools.CollinearSimplify(current, FP.Zero); List <Vertices> list2 = Triangulate.ConvexPartition(vertices, this.Decomposer, true, FP.EN3); foreach (Vertices current2 in list2) { bool flag2 = current2.Count > 2; if (flag2) { this._bodyMap[gx, gy].Add(BodyFactory.CreatePolygon(this.World, current2, 1, null)); } } } } }
public static Vertices DouglasPeuckerSimplify(Vertices vertices, FP distanceTolerance) { bool flag = vertices.Count <= 3; Vertices result; if (flag) { result = vertices; } else { bool[] array = new bool[vertices.Count]; for (int i = 0; i < vertices.Count; i++) { array[i] = true; } SimplifyTools.SimplifySection(vertices, 0, vertices.Count - 1, array, distanceTolerance); Vertices vertices2 = new Vertices(vertices.Count); for (int j = 0; j < vertices.Count; j++) { bool flag2 = array[j]; if (flag2) { vertices2.Add(vertices[j]); } } result = vertices2; } return(result); }
private static List <Vertices> Execute(Vertices subject, Vertices clip, PolyClipType clipType, out PolyClipError error) { Debug.Assert(subject.IsSimple() && clip.IsSimple(), "Non simple input!", "Input polygons must be simple (cannot intersect themselves)."); Vertices vertices; Vertices vertices2; YuPengClipper.CalculateIntersections(subject, clip, out vertices, out vertices2); TSVector2 lowerBound = subject.GetAABB().LowerBound; TSVector2 lowerBound2 = clip.GetAABB().LowerBound; TSVector2 tSVector; TSVector2.Min(ref lowerBound, ref lowerBound2, out tSVector); tSVector = TSVector2.one - tSVector; bool flag = tSVector != TSVector2.zero; if (flag) { vertices.Translate(ref tSVector); vertices2.Translate(ref tSVector); } vertices.ForceCounterClockWise(); vertices2.ForceCounterClockWise(); List <FP> poly1Coeff; List <YuPengClipper.Edge> poly1Simplicies; YuPengClipper.CalculateSimplicalChain(vertices, out poly1Coeff, out poly1Simplicies); List <FP> poly2Coeff; List <YuPengClipper.Edge> poly2Simplicies; YuPengClipper.CalculateSimplicalChain(vertices2, out poly2Coeff, out poly2Simplicies); List <YuPengClipper.Edge> simplicies; YuPengClipper.CalculateResultChain(poly1Coeff, poly1Simplicies, poly2Coeff, poly2Simplicies, clipType, out simplicies); List <Vertices> list; error = YuPengClipper.BuildPolygonsFromChain(simplicies, out list); tSVector *= -1f; for (int i = 0; i < list.Count; i++) { list[i].Translate(ref tSVector); SimplifyTools.CollinearSimplify(list[i], FP.Zero); } return(list); }
private void GenerateTerrain(int gx, int gy) { FP ax = gx * CellSize; FP ay = gy * CellSize; List <Vertices> polys = MarchingSquares.DetectSquares(new AABB(new TSVector2(ax, ay), new TSVector2(ax + CellSize, ay + CellSize)), SubCellSize, SubCellSize, _terrainMap, Iterations, true); if (polys.Count == 0) { return; } _bodyMap[gx, gy] = new List <Body>(); // create the scale vector TSVector2 scale = new TSVector2(1f / PointsPerUnit, 1f / -PointsPerUnit); // create physics object for this grid cell foreach (Vertices item in polys) { // does this need to be negative? item.Scale(ref scale); item.Translate(ref _topLeft); Vertices simplified = SimplifyTools.CollinearSimplify(item, FP.Zero); List <Vertices> decompPolys = Triangulate.ConvexPartition(simplified, Decomposer, true, FP.EN3); foreach (Vertices poly in decompPolys) { if (poly.Count > 2) { _bodyMap[gx, gy].Add(BodyFactory.CreatePolygon(World, poly, 1, null)); } } } }
private static void SimplifySection(Vertices vertices, int i, int j, bool[] usePoint, FP distanceTolerance) { bool flag = i + 1 == j; if (!flag) { TSVector2 tSVector = vertices[i]; TSVector2 tSVector2 = vertices[j]; FP fP = -1.0; int num = i; for (int k = i + 1; k < j; k++) { TSVector2 tSVector3 = vertices[k]; FP fP2 = LineTools.DistanceBetweenPointAndLineSegment(ref tSVector3, ref tSVector, ref tSVector2); bool flag2 = fP2 > fP; if (flag2) { fP = fP2; num = k; } } bool flag3 = fP <= distanceTolerance; if (flag3) { for (int l = i + 1; l < j; l++) { usePoint[l] = false; } } else { SimplifyTools.SimplifySection(vertices, i, num, usePoint, distanceTolerance); SimplifyTools.SimplifySection(vertices, num, j, usePoint, distanceTolerance); } } }
/// <summary> /// Combine a list of triangles into a list of convex polygons. /// /// Note: This only works on triangles. /// </summary> ///<param name="triangles">The triangles.</param> ///<param name="maxPolys">The maximun number of polygons to return.</param> ///<param name="tolerance">The tolerance</param> public static List <Vertices> PolygonizeTriangles(List <Vertices> triangles, int maxPolys = int.MaxValue, float tolerance = 0.001f) { if (triangles.Count <= 0) { return(triangles); } List <Vertices> polys = new List <Vertices>(); bool[] covered = new bool[triangles.Count]; for (int i = 0; i < triangles.Count; ++i) { covered[i] = false; //Check here for degenerate triangles Vertices triangle = triangles[i]; TSVector2 a = triangle[0]; TSVector2 b = triangle[1]; TSVector2 c = triangle[2]; if ((a.x == b.x && a.y == b.y) || (b.x == c.x && b.y == c.y) || (a.x == c.x && a.y == c.y)) { covered[i] = true; } } int polyIndex = 0; bool notDone = true; while (notDone) { int currTri = -1; for (int i = 0; i < triangles.Count; ++i) { if (covered[i]) { continue; } currTri = i; break; } if (currTri == -1) { notDone = false; } else { Vertices poly = new Vertices(3); for (int i = 0; i < 3; i++) { poly.Add(triangles[currTri][i]); } covered[currTri] = true; int index = 0; for (int i = 0; i < 2 * triangles.Count; ++i, ++index) { while (index >= triangles.Count) { index -= triangles.Count; } if (covered[index]) { continue; } Vertices newP = AddTriangle(triangles[index], poly); if (newP == null) { continue; // is this right } if (newP.Count > Settings.MaxPolygonVertices) { continue; } if (newP.IsConvex()) { //Or should it be IsUsable? Maybe re-write IsConvex to apply the angle threshold from Box2d poly = new Vertices(newP); covered[index] = true; } } //We have a maximum of polygons that we need to keep under. if (polyIndex < maxPolys) { SimplifyTools.MergeParallelEdges(poly, tolerance); //If identical points are present, a triangle gets //borked by the MergeParallelEdges function, hence //the vertex number check if (poly.Count >= 3) { polys.Add(new Vertices(poly)); } else { Debug.WriteLine("Skipping corrupt poly."); } } if (poly.Count >= 3) { polyIndex++; //Must be outside (polyIndex < polysLength) test } } } //TODO: Add sanity check //Remove empty vertice collections for (int i = polys.Count - 1; i >= 0; i--) { if (polys[i].Count == 0) { polys.RemoveAt(i); } } return(polys); }
public static List <Vertices> PolygonizeTriangles(List <Vertices> triangles, int maxPolys = 2147483647, float tolerance = 0.001f) { bool flag = triangles.Count <= 0; List <Vertices> result; if (flag) { result = triangles; } else { List <Vertices> list = new List <Vertices>(); bool[] array = new bool[triangles.Count]; for (int i = 0; i < triangles.Count; i++) { array[i] = false; Vertices vertices = triangles[i]; TSVector2 tSVector = vertices[0]; TSVector2 tSVector2 = vertices[1]; TSVector2 tSVector3 = vertices[2]; bool flag2 = (tSVector.x == tSVector2.x && tSVector.y == tSVector2.y) || (tSVector2.x == tSVector3.x && tSVector2.y == tSVector3.y) || (tSVector.x == tSVector3.x && tSVector.y == tSVector3.y); if (flag2) { array[i] = true; } } int num = 0; bool flag3 = true; while (flag3) { int num2 = -1; for (int j = 0; j < triangles.Count; j++) { bool flag4 = array[j]; if (!flag4) { num2 = j; break; } } bool flag5 = num2 == -1; if (flag5) { flag3 = false; } else { Vertices vertices2 = new Vertices(3); for (int k = 0; k < 3; k++) { vertices2.Add(triangles[num2][k]); } array[num2] = true; int l = 0; int m = 0; while (m < 2 * triangles.Count) { while (l >= triangles.Count) { l -= triangles.Count; } bool flag6 = array[l]; if (!flag6) { Vertices vertices3 = SimpleCombiner.AddTriangle(triangles[l], vertices2); bool flag7 = vertices3 == null; if (!flag7) { bool flag8 = vertices3.Count > Settings.MaxPolygonVertices; if (!flag8) { bool flag9 = vertices3.IsConvex(); if (flag9) { vertices2 = new Vertices(vertices3); array[l] = true; } } } } m++; l++; } bool flag10 = num < maxPolys; if (flag10) { SimplifyTools.MergeParallelEdges(vertices2, tolerance); bool flag11 = vertices2.Count >= 3; if (flag11) { list.Add(new Vertices(vertices2)); } else { Debug.WriteLine("Skipping corrupt poly."); } } bool flag12 = vertices2.Count >= 3; if (flag12) { num++; } } } for (int n = list.Count - 1; n >= 0; n--) { bool flag13 = list[n].Count == 0; if (flag13) { list.RemoveAt(n); } } result = list; } return(result); }
/// <summary> /// Implements "A new algorithm for Boolean operations on general polygons" /// available here: http://liama.ia.ac.cn/wiki/_media/user:dong:dong_cg_05.pdf /// Merges two polygons, a subject and a clip with the specified operation. Polygons may not be /// self-intersecting. /// /// Warning: May yield incorrect results or even crash if polygons contain collinear points. /// </summary> /// <param name="subject">The subject polygon.</param> /// <param name="clip">The clip polygon, which is added, /// substracted or intersected with the subject</param> /// <param name="clipType">The operation to be performed. Either /// Union, Difference or Intersection.</param> /// <param name="error">The error generated (if any)</param> /// <returns>A list of closed polygons, which make up the result of the clipping operation. /// Outer contours are ordered counter clockwise, holes are ordered clockwise.</returns> private static List <Vertices> Execute(Vertices subject, Vertices clip, PolyClipType clipType, out PolyClipError error) { Debug.Assert(subject.IsSimple() && clip.IsSimple(), "Non simple input!", "Input polygons must be simple (cannot intersect themselves)."); // Copy polygons Vertices slicedSubject; Vertices slicedClip; // Calculate the intersection and touch points between // subject and clip and add them to both CalculateIntersections(subject, clip, out slicedSubject, out slicedClip); // Translate polygons into upper right quadrant // as the algorithm depends on it TSVector2 lbSubject = subject.GetAABB().LowerBound; TSVector2 lbClip = clip.GetAABB().LowerBound; TSVector2 translate; TSVector2.Min(ref lbSubject, ref lbClip, out translate); translate = TSVector2.one - translate; if (translate != TSVector2.zero) { slicedSubject.Translate(ref translate); slicedClip.Translate(ref translate); } // Enforce counterclockwise contours slicedSubject.ForceCounterClockWise(); slicedClip.ForceCounterClockWise(); List <Edge> subjectSimplices; List <FP> subjectCoeff; List <Edge> clipSimplices; List <FP> clipCoeff; // Build simplical chains from the polygons and calculate the // the corresponding coefficients CalculateSimplicalChain(slicedSubject, out subjectCoeff, out subjectSimplices); CalculateSimplicalChain(slicedClip, out clipCoeff, out clipSimplices); List <Edge> resultSimplices; // Determine the characteristics function for all non-original edges // in subject and clip simplical chain and combine the edges contributing // to the result, depending on the clipType CalculateResultChain(subjectCoeff, subjectSimplices, clipCoeff, clipSimplices, clipType, out resultSimplices); List <Vertices> result; // Convert result chain back to polygon(s) error = BuildPolygonsFromChain(resultSimplices, out result); // Reverse the polygon translation from the beginning // and remove collinear points from output translate *= -1f; for (int i = 0; i < result.Count; ++i) { result[i].Translate(ref translate); SimplifyTools.CollinearSimplify(result[i], FP.Zero); } return(result); }