ArrayAccess() 공개 정적인 메소드

Creates an IndexExpression to access an array.
The expression representing the array can be obtained by using the MakeMemberAccess method, or through NewArrayBounds or NewArrayInit.
public static ArrayAccess ( Expression array ) : IndexExpression
array Expression An expression representing the array to index.
리턴 IndexExpression
예제 #1
0
        public void ArrayAccess()
        {
            var expected = LinqExpression.ArrayAccess(
                LinqExpression.Parameter(
                    typeof(int[])),
                LinqExpression.Parameter(
                    typeof(int)));

            using var g = new GraphEngine.Graph();
            g.LoadFromString(@"
@prefix : <http://example.com/> .

:s
    :arrayAccessArray [
        :parameterType [
            :typeName ""System.Int32[]"" ;
        ] ;
    ] ;
    :arrayAccessIndexes (
        [
            :parameterType [
                :typeName ""System.Int32"" ;
            ] ;
        ]
    ) ;
.
");
            var s = g.GetUriNode(":s");

            var actual = Expression.Parse(s).LinqExpression;

            Console.WriteLine(actual.GetDebugView());

            actual.Should().Be(expected);
        }
        public LambdaExpression CreateLambda(Type from, Type to)
        {
            var toParameters = to.GetTypeInfo().GenericTypeArguments;
            var tupa         = toParameters.Length;
            var input        = Ex.Parameter(from, "input");
            var converters   = toParameters.Select(p => Ref.GetLambda(typeof(string), p)).ToArray();
            var res          = toParameters.Select(p => Ex.Parameter(typeof(ConversionResult <>).MakeGenericType(p))).ToArray();
            var end          = Ex.Label(typeof(ConversionResult <>).MakeGenericType(to), "end");
            var indexer      = typeof(string[]).GetTypeInfo().GetDeclaredProperty("Item");

            var split      = Ex.Parameter(typeof(string[]), "split");
            var conversion = Ex.Block(converters.Select((c, i) =>
                                                        Ex.Block(
                                                            Ex.Assign(res[i],
                                                                      c.ApplyTo(Ex.MakeIndex(split, indexer, new[] { Ex.MakeBinary(Et.Add, Ex.Constant(i), Ex.MakeBinary(Et.Subtract, Ex.Property(split, nameof(Array.Length)), Ex.Constant(tupa))) }))),
                                                            Ex.IfThen(Ex.Not(Ex.Property(res[i], nameof(IConversionResult.IsSuccessful))),
                                                                      Ex.Goto(end, NoResult(to))))));
            var block = Ex.Block(new[] { split },
                                 Ex.Assign(split, Ex.Call(input, nameof(string.Split), Type.EmptyTypes, _separator)),
                                 Ex.Condition(Ex.MakeBinary(Et.LessThan, Ex.Property(split, nameof(Array.Length)), Ex.Constant(tupa)),
                                              NoResult(to),
                                              Ex.Block(res,
                                                       Ex.IfThen(Ex.MakeBinary(Et.GreaterThan, Ex.Property(split, nameof(Array.Length)), Ex.Constant(tupa)),
                                                                 Ex.Assign(Ex.ArrayAccess(split, Ex.MakeBinary(Et.Subtract, Ex.Property(split, nameof(Array.Length)), Ex.Constant(tupa))),
                                                                           Ex.Call(typeof(string), nameof(string.Join), Type.EmptyTypes, _separatorString,
                                                                                   Ex.Call(typeof(Enumerable), nameof(Enumerable.Take), new[] { typeof(string) }, split,
                                                                                           Ex.MakeBinary(Et.Add, Ex.Constant(1), Ex.MakeBinary(Et.Subtract, Ex.Property(split, nameof(Array.Length)), Ex.Constant(tupa))))))),
                                                       conversion,
                                                       Ex.Label(end, Result(to, Ex.Call(Creator(to), res.Select(r => Ex.Property(r, nameof(IConversionResult.Result)))))))));
            var lambda = Ex.Lambda(block, input);

            return(lambda);
        }
예제 #3
0
 static Expression GetArgument(Expression Expression, int n)
 {
     if (Expression.Type == typeof(LuaArguments))
         return Expression.Property(Expression, "Item", Expression.Constant(n));
     else
         return Expression.ArrayAccess(Expression, Expression.Constant(n));
 }
예제 #4
0
        // Define a function for running the simulation of a population system S with timestep
        // dt. The number of timesteps and the data buffer are parameters of the defined function.
        static Func <int, double[, ], int> DefineSimulate(double dt, PopulationSystem S)
        {
            CodeGen code = new CodeGen();

            // Define a parameter for the current population x, and define mappings to the
            // expressions defined above.
            LinqExpr N    = code.Decl <int>(Scope.Parameter, "N");
            LinqExpr Data = code.Decl <double[, ]>(Scope.Parameter, "Data");

            // Loop over the sample range requested. Note that this loop is a 'runtime' loop,
            // while the rest of the loops nested in the body of this loop are 'compile time' loops.
            LinqExpr n = code.DeclInit <int>("n", 1);

            code.For(
                () => { },
                LinqExpr.LessThan(n, N),
                () => code.Add(LinqExpr.PostIncrementAssign(n)),
                () =>
            {
                // Define expressions representing the population of each species.
                List <Expression> x = new List <Expression>();
                for (int i = 0; i < S.N; ++i)
                {
                    // Define a variable xi.
                    Expression xi = "x" + i.ToString();
                    x.Add(xi);
                    // xi = Data[n, i].
                    code.DeclInit(xi, LinqExpr.ArrayAccess(Data, LinqExpr.Subtract(n, LinqExpr.Constant(1)), LinqExpr.Constant(i)));
                }

                for (int i = 0; i < S.N; ++i)
                {
                    // This list is the elements of the sum representing the i'th
                    // row of f, i.e. r_i + (A*x)_i.
                    Expression dx_dt = 1;
                    for (int j = 0; j < S.N; ++j)
                    {
                        dx_dt -= S.A[i, j] * x[j];
                    }

                    // Define dx_i/dt = x_i * f_i(x), as per the Lotka-Volterra equations.
                    dx_dt *= x[i] * S.r[i];

                    // Euler's method for x(t) is: x(t) = x(t - h) + h * x'(t - h).
                    Expression integral = x[i] + dt * dx_dt;

                    // Data[n, i] = Data[n - 1, i] + dt * dx_dt;
                    code.Add(LinqExpr.Assign(
                                 LinqExpr.ArrayAccess(Data, n, LinqExpr.Constant(i)),
                                 code.Compile(integral)));
                }
            });

            code.Return(N);

            // Compile the generated code.
            LinqExprs.Expression <Func <int, double[, ], int> > expr = code.Build <Func <int, double[, ], int> >();
            return(expr.Compile());
        }
예제 #5
0
파일: Py.cs 프로젝트: alexphaus/py
 Exp Call(Exp obj, string name, Exp arg0)
 {
     return(Exp.Call(obj, Callvirt, Exp.Constant(name),
                     Exp.Block
                     (
                         Exp.Assign(Exp.Field(arg1, "self"), obj),
                         Exp.Assign(Exp.ArrayAccess(Exp.Field(arg1, "Input"), Exp.Constant(0)), arg0),
                         arg1
                     )));
 }
        public void ArrayAccess()
        {
            var expression =
                LinqExpression.ArrayAccess(
                    LinqExpression.Parameter(
                        typeof(int[])),
                    LinqExpression.Parameter(
                        typeof(int)));

            ShouldRoundrip(expression);
        }
예제 #7
0
        // Solve a system of linear equations
        private static void Solve(CodeGen code, LinqExpr Ab, IEnumerable <LinearCombination> Equations, IEnumerable <Expression> Unknowns)
        {
            LinearCombination[] eqs    = Equations.ToArray();
            Expression[]        deltas = Unknowns.ToArray();

            int M = eqs.Length;
            int N = deltas.Length;

            // Initialize the matrix.
            for (int i = 0; i < M; ++i)
            {
                LinqExpr Abi = code.ReDeclInit <double[]>("Abi", LinqExpr.ArrayAccess(Ab, LinqExpr.Constant(i)));
                for (int x = 0; x < N; ++x)
                {
                    code.Add(LinqExpr.Assign(
                                 LinqExpr.ArrayAccess(Abi, LinqExpr.Constant(x)),
                                 code.Compile(eqs[i][deltas[x]])));
                }
                code.Add(LinqExpr.Assign(
                             LinqExpr.ArrayAccess(Abi, LinqExpr.Constant(N)),
                             code.Compile(eqs[i][1])));
            }

            // Gaussian elimination on this turd.
            //RowReduce(code, Ab, M, N);
            code.Add(LinqExpr.Call(
                         GetMethod <Simulation>("RowReduce", Ab.Type, typeof(int), typeof(int)),
                         Ab,
                         LinqExpr.Constant(M),
                         LinqExpr.Constant(N)));

            // Ab is now upper triangular, solve it.
            for (int j = N - 1; j >= 0; --j)
            {
                LinqExpr _j  = LinqExpr.Constant(j);
                LinqExpr Abj = code.ReDeclInit <double[]>("Abj", LinqExpr.ArrayAccess(Ab, _j));

                LinqExpr r = LinqExpr.ArrayAccess(Abj, LinqExpr.Constant(N));
                for (int ji = j + 1; ji < N; ++ji)
                {
                    r = LinqExpr.Add(r, LinqExpr.Multiply(LinqExpr.ArrayAccess(Abj, LinqExpr.Constant(ji)), code[deltas[ji]]));
                }
                code.DeclInit(deltas[j], LinqExpr.Divide(LinqExpr.Negate(r), LinqExpr.ArrayAccess(Abj, _j)));
            }
        }
예제 #8
0
        // Pseudocode:
        //I input =>
        //{
        //  var i = (UI)input;
        //  var result = new char[base64sizeof(UI)];
        //  for (int j = 0; j == 0 || i > 0; j++)
        //  {
        //      result[j] = _mapChar[i & 0x3f];
        //      i >>= 6;
        //  }
        //}
        private LambdaExpression toLambda(Type from)
        {
            var input     = Ex.Parameter(from, "input");
            var result    = Ex.Parameter(typeof(char[]), "result");
            var i         = workingType(from) == from ? input : Ex.Parameter(workingType(from), "i");
            var j         = Ex.Parameter(typeof(int), "j");
            var loopstart = Ex.Label("loopstart");
            var loopend   = Ex.Label("loopend");

            var loop = Ex.Block(
                Ex.Label(loopstart),
                Ex.IfThen(Ex.MakeBinary(ExpressionType.AndAlso,
                                        Ex.MakeBinary(ExpressionType.GreaterThan, j, Ex.Constant(0)),
                                        i.Type == typeof(BigInteger)
                        ? (Ex)Ex.Call(i, nameof(BigInteger.Equals), Type.EmptyTypes, Ex.Constant(BigInteger.Zero))
                        : Ex.MakeBinary(ExpressionType.Equal, i, Ex.Convert(Ex.Constant(0), i.Type))),
                          Ex.Goto(loopend)),
                Ex.Assign(
                    Ex.ArrayAccess(result, j),
                    Ex.ArrayIndex(Ex.Constant(_mapChars),
                                  Ex.Convert(Ex.MakeBinary(ExpressionType.And, i, Ex.Convert(Ex.Constant(0x3f), i.Type)), typeof(int)))),
                Ex.RightShiftAssign(i, Ex.Constant(6)),
                Ex.PostIncrementAssign(j),
                Ex.Goto(loopstart));
            var ret = Result(typeof(string),
                             Ex.New(typeof(string).GetTypeInfo().DeclaredConstructors
                                    .Select(c => new { c, p = c.GetParameters() })
                                    .First(c => c.p.Length == 3 && c.p[0].ParameterType == typeof(char[]) && c.p[1].ParameterType == typeof(int) && c.p[2].ParameterType == typeof(int)).c,
                                    result, Ex.Constant(0), j));
            var block = Ex.Block(Ex.Assign(j, Ex.Constant(0)),
                                 Ex.Assign(result, Ex.NewArrayBounds(typeof(char), Ex.Constant(charbound(from)))),
                                 loop,
                                 Ex.Label(loopend),
                                 ret);

            block = input == i
                ? Ex.Block(new[] { j, result },
                           block)
                : Ex.Block(new[] { i, j, result },
                           Ex.Assign(i, Ex.Convert(input, i.Type)),
                           block);

            return(Ex.Lambda(block, input));
        }
        public LambdaExpression CreateLambda(Type from, Type to)
        {
            var input          = Ex.Parameter(from, "input");
            var eType          = to.GetElementType();
            var res            = Ex.Parameter(typeof(ConversionResult <>).MakeGenericType(eType).MakeArrayType(), "res");
            var end            = Ex.Label(typeof(ConversionResult <>).MakeGenericType(to), "end");
            var fromParameters = from.GetTypeInfo().GenericTypeArguments;
            var converters     = fromParameters.Select(t => new { Lambda = Ref.GetLambda(t, eType), Input = t }).ToArray();

            var block = Ex.Block(new[] { res },
                                 Ex.Assign(res, Ex.NewArrayBounds(typeof(ConversionResult <>).MakeGenericType(eType), Ex.Constant(fromParameters.Length))),
                                 Ex.Block(converters.Select((con, i) =>
                                                            Ex.Block(
                                                                Ex.Assign(Ex.ArrayAccess(res, Ex.Constant(i)), con.Lambda.ApplyTo(Ex.PropertyOrField(input, $"Item{i + 1}"))),
                                                                Ex.IfThen(Ex.Not(Ex.Property(Ex.ArrayIndex(res, Ex.Constant(i)), nameof(IConversionResult.IsSuccessful))),
                                                                          Ex.Goto(end, NoResult(to)))))),
                                 Ex.Label(end, Result(to,
                                                      Ex.NewArrayInit(eType,
                                                                      Enumerable.Range(0, fromParameters.Length)
                                                                      .Select(idx => Ex.Property(Ex.ArrayIndex(res, Ex.Constant(idx)), nameof(IConversionResult.Result)))))));
            var lambda = Ex.Lambda(block, input);

            return(lambda);
        }
예제 #10
0
 public static Ex Index(this Ex me, Ex index) => Ex.ArrayAccess(me, index);
예제 #11
0
        private static LinqExpression[] CompileGroup(ExpressionGroup group, CompilationData data)
        {
            switch (group)
            {
            case Persist p:
                foreach (var s in p.State)
                {
                    if (!(s.InitialValue is Constant))
                    {
                        throw new Exception("Persist initial value is not constant");
                    }

                    data.StateValues.Add(((Constant)s.InitialValue).Value);
                }

                var assigns = new List <LinqExpression>();
                // TODO: Resolve parent scopes
                data.ResolveState = s => LinqExpression.ArrayAccess(data.StateArray, LinqExpression.Constant(s.Id));
                for (var i = 0; i < p.NewValue.Count; i++)
                {
                    var newValueExpr = Compile(p.NewValue[i], data);
                    assigns.Add(LinqExpression.Assign(
                                    LinqExpression.ArrayAccess(data.StateArray, LinqExpression.Constant(i)), newValueExpr));
                }

                data.Statements.AddRange(assigns);
                return(Enumerable.Range(0, p.Size)
                       .Select(i => LinqExpression.ArrayAccess(data.StateArray, LinqExpression.Constant(i)))
                       .ToArray());

            case Loop l:
                var stateList = new List <ParameterExpression>();
                foreach (var s in l.State)
                {
                    var initial  = Compile(s.InitialValue, data);
                    var variable = LinqExpression.Variable(initial.Type);
                    data.Statements.Add(LinqExpression.Assign(variable, initial));
                    data.Variables.Add(variable);
                    stateList.Add(variable);
                }

                // TODO: Resolve parent scopes
                data.ResolveState = s => stateList[s.Id];
                var parentStatements = data.Statements;
                // Make a new cache that copies in the old one, but won't leak State expressions
                data.Cache = new Dictionary <CachedExpression, ParameterExpression>(data.Cache);

                // Create a new statements list to put in the loop body
                var s1        = data.Statements = new List <LinqExpression>();
                var condition = Compile(l.Condition, data);
                var s2        = data.Statements = new List <LinqExpression>();
                var newState  = l.Body.Select(e => Compile(e, data)).ToArray();

                // Ensure that the entire state is only set at the end of the loop
                for (var i = 0; i < newState.Length; i++)
                {
                    var s = newState[i];
                    if (!(s is ParameterExpression))
                    {
                        var tmpVar = LinqExpression.Variable(s.Type);
                        data.Variables.Add(tmpVar);
                        s2.Add(LinqExpression.Assign(tmpVar, s));
                        newState[i] = tmpVar;
                    }
                }

                var breakLabel = LinqExpression.Label();
                var body       = LinqExpression.Block(s1
                                                      .Concat(new[]
                {
                    LinqExpression.IfThen(
                        LinqExpression.LessThan(condition, LinqExpression.Constant(1f)),
                        LinqExpression.Break(breakLabel))
                })
                                                      .Concat(s2)
                                                      .Concat(newState.Select((e, i) =>
                                                                              LinqExpression.Assign(stateList[i], e))));
                parentStatements.Add(LinqExpression.Loop(body, breakLabel));
                return(stateList.ToArray());

            default:
                throw new NotSupportedException();
            }
        }
예제 #12
0
        // Use homotopy method with newton's method to find a solution for F(x) = 0.
        private static List <Arrow> NSolve(List <Expression> F, List <Arrow> x0, double Epsilon, int MaxIterations)
        {
            int M = F.Count;
            int N = x0.Count;

            // Compute JxF, the Jacobian of F.
            List <Dictionary <Expression, Expression> > JxF = Jacobian(F, x0.Select(i => i.Left)).ToList();

            // Define a function to evaluate JxH(x), where H = F(x) - s*F(x0).
            CodeGen code = new CodeGen();

            ParamExpr _JxH = code.Decl <double[, ]>(Scope.Parameter, "JxH");
            ParamExpr _x0  = code.Decl <double[]>(Scope.Parameter, "x0");
            ParamExpr _s   = code.Decl <double>(Scope.Parameter, "s");

            // Load x_j from the input array and add them to the map.
            for (int j = 0; j < N; ++j)
            {
                code.DeclInit(x0[j].Left, LinqExpr.ArrayAccess(_x0, LinqExpr.Constant(j)));
            }

            LinqExpr error = code.Decl <double>("error");

            // Compile the expressions to assign JxH
            for (int i = 0; i < M; ++i)
            {
                LinqExpr _i = LinqExpr.Constant(i);
                for (int j = 0; j < N; ++j)
                {
                    code.Add(LinqExpr.Assign(
                                 LinqExpr.ArrayAccess(_JxH, _i, LinqExpr.Constant(j)),
                                 code.Compile(JxF[i][x0[j].Left])));
                }
                // e = F(x) - s*F(x0)
                LinqExpr e = code.DeclInit <double>("e", LinqExpr.Subtract(code.Compile(F[i]), LinqExpr.Multiply(LinqExpr.Constant((double)F[i].Evaluate(x0)), _s)));
                code.Add(LinqExpr.Assign(LinqExpr.ArrayAccess(_JxH, _i, LinqExpr.Constant(N)), e));
                // error += e * e
                code.Add(LinqExpr.AddAssign(error, LinqExpr.Multiply(e, e)));
            }

            // return error
            code.Return(error);

            Func <double[, ], double[], double, double> JxH = code.Build <Func <double[, ], double[], double, double> >().Compile();

            double[] x = new double[N];

            // Remember where we last succeeded/failed.
            double s0 = 0.0;
            double s1 = 1.0;

            do
            {
                try
                {
                    // H(F, s) = F - s*F0
                    NewtonsMethod(M, N, JxH, s0, x, Epsilon, MaxIterations);

                    // Success at this s!
                    s1 = s0;
                    for (int i = 0; i < N; ++i)
                    {
                        x0[i] = Arrow.New(x0[i].Left, x[i]);
                    }

                    // Go near the goal.
                    s0 = Lerp(s0, 0.0, 0.9);
                }
                catch (FailedToConvergeException)
                {
                    // Go near the last success.
                    s0 = Lerp(s0, s1, 0.9);

                    for (int i = 0; i < N; ++i)
                    {
                        x[i] = (double)x0[i].Right;
                    }
                }
            } while (s0 > 0.0 && s1 >= s0 + 1e-6);

            // Make sure the last solution is at F itself.
            if (s0 != 0.0)
            {
                NewtonsMethod(M, N, JxH, 0.0, x, Epsilon, MaxIterations);
                for (int i = 0; i < N; ++i)
                {
                    x0[i] = Arrow.New(x0[i].Left, x[i]);
                }
            }

            return(x0);
        }
예제 #13
0
        // Generate code to perform row reduction.
        private static void RowReduce(CodeGen code, LinqExpr Ab, int M, int N)
        {
            // For each variable in the system...
            for (int j = 0; j + 1 < N; ++j)
            {
                LinqExpr _j  = LinqExpr.Constant(j);
                LinqExpr Abj = code.ReDeclInit <double[]>("Abj", LinqExpr.ArrayAccess(Ab, _j));
                // int pi = j
                LinqExpr pi = code.ReDeclInit <int>("pi", _j);
                // double max = |Ab[j][j]|
                LinqExpr max = code.ReDeclInit <double>("max", Abs(LinqExpr.ArrayAccess(Abj, _j)));

                // Find a pivot row for this variable.
                //code.For(j + 1, M, _i =>
                //{
                for (int i = j + 1; i < M; ++i)
                {
                    LinqExpr _i = LinqExpr.Constant(i);

                    // if(|Ab[i][j]| > max) { pi = i, max = |Ab[i][j]| }
                    LinqExpr maxj = code.ReDeclInit <double>("maxj", Abs(LinqExpr.ArrayAccess(LinqExpr.ArrayAccess(Ab, _i), _j)));
                    code.Add(LinqExpr.IfThen(
                                 LinqExpr.GreaterThan(maxj, max),
                                 LinqExpr.Block(
                                     LinqExpr.Assign(pi, _i),
                                     LinqExpr.Assign(max, maxj))));
                }

                // (Maybe) swap the pivot row with the current row.
                LinqExpr Abpi = code.ReDecl <double[]>("Abpi");
                code.Add(LinqExpr.IfThen(
                             LinqExpr.NotEqual(_j, pi), LinqExpr.Block(
                                 new[] { LinqExpr.Assign(Abpi, LinqExpr.ArrayAccess(Ab, pi)) }.Concat(
                                     Enumerable.Range(j, N + 1 - j).Select(x => Swap(
                                                                               LinqExpr.ArrayAccess(Abj, LinqExpr.Constant(x)),
                                                                               LinqExpr.ArrayAccess(Abpi, LinqExpr.Constant(x)),
                                                                               code.ReDecl <double>("swap")))))));

                //// It's hard to believe this swap isn't faster than the above...
                //code.Add(LinqExpr.IfThen(LinqExpr.NotEqual(_j, pi), LinqExpr.Block(
                //    Swap(LinqExpr.ArrayAccess(Ab, _j), LinqExpr.ArrayAccess(Ab, pi), Redeclare<double[]>(code, "temp")),
                //    LinqExpr.Assign(Abj, LinqExpr.ArrayAccess(Ab, _j)))));

                // Eliminate the rows after the pivot.
                LinqExpr p = code.ReDeclInit <double>("p", LinqExpr.ArrayAccess(Abj, _j));
                //code.For(j + 1, M, _i =>
                //{
                for (int i = j + 1; i < M; ++i)
                {
                    LinqExpr _i  = LinqExpr.Constant(i);
                    LinqExpr Abi = code.ReDeclInit <double[]>("Abi", LinqExpr.ArrayAccess(Ab, _i));

                    // s = Ab[i][j] / p
                    LinqExpr s = code.ReDeclInit <double>("scale", LinqExpr.Divide(LinqExpr.ArrayAccess(Abi, _j), p));
                    // Ab[i] -= Ab[j] * s
                    for (int ji = j + 1; ji < N + 1; ++ji)
                    {
                        code.Add(LinqExpr.SubtractAssign(
                                     LinqExpr.ArrayAccess(Abi, LinqExpr.Constant(ji)),
                                     LinqExpr.Multiply(LinqExpr.ArrayAccess(Abj, LinqExpr.Constant(ji)), s)));
                    }
                }
            }
        }
예제 #14
0
        // The resulting lambda processes N samples, using buffers provided for Input and Output:
        //  void Process(int N, double t0, double T, double[] Input0 ..., double[] Output0 ...)
        //  { ... }
        private Delegate DefineProcess()
        {
            // Map expressions to identifiers in the syntax tree.
            List <KeyValuePair <Expression, LinqExpr> > inputs  = new List <KeyValuePair <Expression, LinqExpr> >();
            List <KeyValuePair <Expression, LinqExpr> > outputs = new List <KeyValuePair <Expression, LinqExpr> >();

            // Lambda code generator.
            CodeGen code = new CodeGen();

            // Create parameters for the basic simulation info (N, t, Iterations).
            ParamExpr SampleCount = code.Decl <int>(Scope.Parameter, "SampleCount");
            ParamExpr t           = code.Decl(Scope.Parameter, Simulation.t);

            // Create buffer parameters for each input...
            foreach (Expression i in Input)
            {
                inputs.Add(new KeyValuePair <Expression, LinqExpr>(i, code.Decl <double[]>(Scope.Parameter, i.ToString())));
            }

            // ... and output.
            foreach (Expression i in Output)
            {
                outputs.Add(new KeyValuePair <Expression, LinqExpr>(i, code.Decl <double[]>(Scope.Parameter, i.ToString())));
            }

            // Create globals to store previous values of inputs.
            foreach (Expression i in Input.Distinct())
            {
                AddGlobal(i.Evaluate(t_t0));
            }

            // Define lambda body.

            // int Zero = 0
            LinqExpr Zero = LinqExpr.Constant(0);

            // double h = T / Oversample
            LinqExpr h = LinqExpr.Constant(TimeStep / (double)Oversample);

            // Load the globals to local variables and add them to the map.
            foreach (KeyValuePair <Expression, GlobalExpr <double> > i in globals)
            {
                code.Add(LinqExpr.Assign(code.Decl(i.Key), i.Value));
            }

            foreach (KeyValuePair <Expression, LinqExpr> i in inputs)
            {
                code.Add(LinqExpr.Assign(code.Decl(i.Key), code[i.Key.Evaluate(t_t0)]));
            }

            // Create arrays for linear systems.
            int      M   = Solution.Solutions.OfType <NewtonIteration>().Max(i => i.Equations.Count(), 0);
            int      N   = Solution.Solutions.OfType <NewtonIteration>().Max(i => i.UnknownDeltas.Count(), 0) + 1;
            LinqExpr JxF = code.DeclInit <double[][]>("JxF", LinqExpr.NewArrayBounds(typeof(double[]), LinqExpr.Constant(M)));

            for (int j = 0; j < M; ++j)
            {
                code.Add(LinqExpr.Assign(LinqExpr.ArrayAccess(JxF, LinqExpr.Constant(j)), LinqExpr.NewArrayBounds(typeof(double), LinqExpr.Constant(N))));
            }

            // for (int n = 0; n < SampleCount; ++n)
            ParamExpr n = code.Decl <int>("n");

            code.For(
                () => code.Add(LinqExpr.Assign(n, Zero)),
                LinqExpr.LessThan(n, SampleCount),
                () => code.Add(LinqExpr.PreIncrementAssign(n)),
                () =>
            {
                // Prepare input samples for oversampling interpolation.
                Dictionary <Expression, LinqExpr> dVi = new Dictionary <Expression, LinqExpr>();
                foreach (Expression i in Input.Distinct())
                {
                    LinqExpr Va = code[i];
                    // Sum all inputs with this key.
                    IEnumerable <LinqExpr> Vbs = inputs.Where(j => j.Key.Equals(i)).Select(j => j.Value);
                    LinqExpr Vb = LinqExpr.ArrayAccess(Vbs.First(), n);
                    foreach (LinqExpr j in Vbs.Skip(1))
                    {
                        Vb = LinqExpr.Add(Vb, LinqExpr.ArrayAccess(j, n));
                    }

                    // dVi = (Vb - Va) / Oversample
                    code.Add(LinqExpr.Assign(
                                 Decl <double>(code, dVi, i, "d" + i.ToString().Replace("[t]", "")),
                                 LinqExpr.Multiply(LinqExpr.Subtract(Vb, Va), LinqExpr.Constant(1.0 / (double)Oversample))));
                }

                // Prepare output sample accumulators for low pass filtering.
                Dictionary <Expression, LinqExpr> Vo = new Dictionary <Expression, LinqExpr>();
                foreach (Expression i in Output.Distinct())
                {
                    code.Add(LinqExpr.Assign(
                                 Decl <double>(code, Vo, i, i.ToString().Replace("[t]", "")),
                                 LinqExpr.Constant(0.0)));
                }

                // int ov = Oversample;
                // do { -- ov; } while(ov > 0)
                ParamExpr ov = code.Decl <int>("ov");
                code.Add(LinqExpr.Assign(ov, LinqExpr.Constant(Oversample)));
                code.DoWhile(() =>
                {
                    // t += h
                    code.Add(LinqExpr.AddAssign(t, h));

                    // Interpolate the input samples.
                    foreach (Expression i in Input.Distinct())
                    {
                        code.Add(LinqExpr.AddAssign(code[i], dVi[i]));
                    }

                    // Compile all of the SolutionSets in the solution.
                    foreach (SolutionSet ss in Solution.Solutions)
                    {
                        if (ss is LinearSolutions)
                        {
                            // Linear solutions are easy.
                            LinearSolutions S = (LinearSolutions)ss;
                            foreach (Arrow i in S.Solutions)
                            {
                                code.DeclInit(i.Left, i.Right);
                            }
                        }
                        else if (ss is NewtonIteration)
                        {
                            NewtonIteration S = (NewtonIteration)ss;

                            // Start with the initial guesses from the solution.
                            foreach (Arrow i in S.Guesses)
                            {
                                code.DeclInit(i.Left, i.Right);
                            }

                            // int it = iterations
                            LinqExpr it = code.ReDeclInit <int>("it", Iterations);
                            // do { ... --it } while(it > 0)
                            code.DoWhile((Break) =>
                            {
                                // Solve the un-solved system.
                                Solve(code, JxF, S.Equations, S.UnknownDeltas);

                                // Compile the pre-solved solutions.
                                if (S.KnownDeltas != null)
                                {
                                    foreach (Arrow i in S.KnownDeltas)
                                    {
                                        code.DeclInit(i.Left, i.Right);
                                    }
                                }

                                // bool done = true
                                LinqExpr done = code.ReDeclInit("done", true);
                                foreach (Expression i in S.Unknowns)
                                {
                                    LinqExpr v  = code[i];
                                    LinqExpr dv = code[NewtonIteration.Delta(i)];

                                    // done &= (|dv| < |v|*epsilon)
                                    code.Add(LinqExpr.AndAssign(done, LinqExpr.LessThan(LinqExpr.Multiply(Abs(dv), LinqExpr.Constant(1e4)), LinqExpr.Add(Abs(v), LinqExpr.Constant(1e-6)))));
                                    // v += dv
                                    code.Add(LinqExpr.AddAssign(v, dv));
                                }
                                // if (done) break
                                code.Add(LinqExpr.IfThen(done, Break));

                                // --it;
                                code.Add(LinqExpr.PreDecrementAssign(it));
                            }, LinqExpr.GreaterThan(it, Zero));

                            //// bool failed = false
                            //LinqExpr failed = Decl(code, code, "failed", LinqExpr.Constant(false));
                            //for (int i = 0; i < eqs.Length; ++i)
                            //    // failed |= |JxFi| > epsilon
                            //    code.Add(LinqExpr.OrAssign(failed, LinqExpr.GreaterThan(Abs(eqs[i].ToExpression().Compile(map)), LinqExpr.Constant(1e-3))));

                            //code.Add(LinqExpr.IfThen(failed, ThrowSimulationDiverged(n)));
                        }
                    }

                    // Update the previous timestep variables.
                    foreach (SolutionSet S in Solution.Solutions)
                    {
                        foreach (Expression i in S.Unknowns.Where(i => globals.Keys.Contains(i.Evaluate(t_t0))))
                        {
                            code.Add(LinqExpr.Assign(code[i.Evaluate(t_t0)], code[i]));
                        }
                    }

                    // Vo += i
                    foreach (Expression i in Output.Distinct())
                    {
                        LinqExpr Voi = LinqExpr.Constant(0.0);
                        try
                        {
                            Voi = code.Compile(i);
                        }
                        catch (Exception Ex)
                        {
                            Log.WriteLine(MessageType.Warning, Ex.Message);
                        }
                        code.Add(LinqExpr.AddAssign(Vo[i], Voi));
                    }

                    // Vi_t0 = Vi
                    foreach (Expression i in Input.Distinct())
                    {
                        code.Add(LinqExpr.Assign(code[i.Evaluate(t_t0)], code[i]));
                    }

                    // --ov;
                    code.Add(LinqExpr.PreDecrementAssign(ov));
                }, LinqExpr.GreaterThan(ov, Zero));

                // Output[i][n] = Vo / Oversample
                foreach (KeyValuePair <Expression, LinqExpr> i in outputs)
                {
                    code.Add(LinqExpr.Assign(LinqExpr.ArrayAccess(i.Value, n), LinqExpr.Multiply(Vo[i.Key], LinqExpr.Constant(1.0 / (double)Oversample))));
                }

                // Every 256 samples, check for divergence.
                if (Vo.Any())
                {
                    code.Add(LinqExpr.IfThen(LinqExpr.Equal(LinqExpr.And(n, LinqExpr.Constant(0xFF)), Zero),
                                             LinqExpr.Block(Vo.Select(i => LinqExpr.IfThenElse(IsNotReal(i.Value),
                                                                                               ThrowSimulationDiverged(n),
                                                                                               LinqExpr.Assign(i.Value, RoundDenormToZero(i.Value)))))));
                }
            });

            // Copy the global state variables back to the globals.
            foreach (KeyValuePair <Expression, GlobalExpr <double> > i in globals)
            {
                code.Add(LinqExpr.Assign(i.Value, code[i.Key]));
            }

            LinqExprs.LambdaExpression lambda = code.Build();
            Delegate ret = lambda.Compile();

            return(ret);
        }
예제 #15
0
 public Expr ToExpression() => Expr.ArrayAccess(Array.ToExpression(), Index.ToExpression());
예제 #16
0
        public override TreeNode TryUnroll()
        {
            if (!MustUnroll)
            {
                return(this);
            }

            // Reduce begins now
            var bodyExpression = new TreeNode()
            {
                TypeToken        = Array.TypeToken.GetElementTypeToken(),
                MemberToken      = Array.MemberToken,
                AccessExpression = Array.AccessExpression
            };

            // Array initializer added now and only now
            bodyExpression.ReadExpression.Add(bodyExpression.TypeToken.NewArrayBounds(Expr.Constant(IterationCount - InitialValue)));

            // Create N blocks of body
            for (var i = 0; i < IterationCount - InitialValue; ++i)
            {
                var invocationNode = new TreeNode()
                {
                    // Can't reuse this.AccessExpression because it's bound on the iterator.
                    AccessExpression = Expr.ArrayAccess(Array.AccessExpression, Expr.Constant(i)),
                    MemberToken      = Array.MemberToken,
                    TypeToken        = Array.TypeToken.GetElementTypeToken()
                };

                // Insert ctor if class
                if (invocationNode.TypeToken.IsClass)
                {
                    invocationNode.ReadExpression.Add(invocationNode.TypeToken.NewExpression());
                }

                // Insert all children
                foreach (var childNode in Children)
                {
                    var newChildNode = new TreeNode()
                    {
                        AccessExpression = Expr.MakeMemberAccess(invocationNode.AccessExpression, childNode.MemberToken.MemberInfo),
                        MemberToken      = childNode.MemberToken,
                        TypeToken        = childNode.TypeToken
                    };

                    // Now that we created a new block we must try to unroll it if it needs to
                    foreach (var subChildNode in childNode.Children)
                    {
                        newChildNode.AddChild(subChildNode.TryUnroll());
                    }

                    // If deserialization calls were found select the one corresponding to the currently unrolling iteration.
                    if (childNode.ReadExpression.Count > 0)
                    {
                        newChildNode.ReadExpression.Add(childNode.ReadExpression[i]);
                    }

                    invocationNode.AddChild(newChildNode);
                }

                bodyExpression.AddChild(invocationNode);
            }

            return(bodyExpression);
        }