internal SynthesizedStateMachineProperty(
            MethodSymbol interfacePropertyGetter,
            StateMachineTypeSymbol stateMachineType)
        {
            _name = ExplicitInterfaceHelpers.GetMemberName(interfacePropertyGetter.AssociatedSymbol.Name, interfacePropertyGetter.ContainingType, aliasQualifierOpt: null);
            var getterName = ExplicitInterfaceHelpers.GetMemberName(interfacePropertyGetter.Name, interfacePropertyGetter.ContainingType, aliasQualifierOpt: null);

            _getter = new SynthesizedStateMachineDebuggerHiddenMethod(
                getterName,
                interfacePropertyGetter,
                stateMachineType,
                associatedProperty: this,
                hasMethodBodyDependency: false);
        }
        public SynthesizedImplementationMethod(
            MethodSymbol interfaceMethod,
            NamedTypeSymbol implementingType,
            string name                       = null,
            bool generateDebugInfo            = true,
            PropertySymbol associatedProperty = null)
        {
            //it does not make sense to add methods to substituted types
            Debug.Assert(implementingType.IsDefinition);

            _name               = name ?? ExplicitInterfaceHelpers.GetMemberName(interfaceMethod.Name, interfaceMethod.ContainingType, aliasQualifierOpt: null);
            _implementingType   = implementingType;
            _generateDebugInfo  = generateDebugInfo;
            _associatedProperty = associatedProperty;
            _explicitInterfaceImplementations = ImmutableArray.Create <MethodSymbol>(interfaceMethod);

            // alpha-rename to get the implementation's type parameters
            var typeMap = interfaceMethod.ContainingType.TypeSubstitution ?? TypeMap.Empty;

            typeMap.WithAlphaRename(interfaceMethod, this, out _typeParameters);

            _interfaceMethod = interfaceMethod.ConstructIfGeneric(TypeArguments);
            _parameters      = SynthesizedParameterSymbol.DeriveParameters(_interfaceMethod, this);
        }
예제 #3
0
        public bool Equals(Symbol member1, Symbol member2)
        {
            if (ReferenceEquals(member1, member2))
            {
                return(true);
            }

            if ((object)member1 == null || (object)member2 == null || member1.Kind != member2.Kind)
            {
                return(false);
            }

            bool sawInterfaceInName1 = false;
            bool sawInterfaceInName2 = false;

            if (_considerName)
            {
                string name1 = ExplicitInterfaceHelpers.GetMemberNameWithoutInterfaceName(member1.Name);
                string name2 = ExplicitInterfaceHelpers.GetMemberNameWithoutInterfaceName(member2.Name);

                sawInterfaceInName1 = name1 != member1.Name;
                sawInterfaceInName2 = name2 != member2.Name;

                if (name1 != name2)
                {
                    return(false);
                }
            }

            // NB: up to, and including, this check, we have not actually forced the (type) parameters
            // to be expanded - we're only using the counts.
            int arity = member1.GetMemberArity();

            if ((arity != member2.GetMemberArity()) ||
                (member1.GetParameterCount() != member2.GetParameterCount()))
            {
                return(false);
            }

            TypeMap typeMap1;
            TypeMap typeMap2;

            if (arity > 0 && _useSpecialHandlingForNullableTypes)
            {
                // We need this special handling in order to avoid forcing resolution of nullable types
                // in signature of an overriding member while we are looking for a matching overridden member.
                // Doing the resolution in the original signature can send us into an infinite cycle because
                // constraints must be inherited from the member we are looking for.
                // It is important to ensure that the fact whether an indexed type parameter we are about to use
                // is a reference type is inherited from the corresponding type parameter of the possibly overridden
                // member (which is member2 when _useSpecialHandlingForNullableTypes is true). This will ensure
                // proper resolution for nullable types in substituted signature of member1, ensuring proper
                // comparison of types across both members.
                ArrayBuilder <TypeParameterSymbol> builder = ArrayBuilder <TypeParameterSymbol> .GetInstance(arity);

                var typeParameters2 = member2.GetMemberTypeParameters();

                for (int i = arity - 1; i >= 0; i--)
                {
                    builder.Add(IndexedTypeParameterSymbolForOverriding.GetTypeParameter(i, typeParameters2[i].IsValueType));
                }

                var indexed = builder.ToImmutableAndFree();

                typeMap1 = new TypeMap(member1.GetMemberTypeParameters(), indexed, true);
                typeMap2 = new TypeMap(typeParameters2, indexed, true);
            }
            else
            {
                typeMap1 = GetTypeMap(member1);
                typeMap2 = GetTypeMap(member2);
            }

            if ((_considerReturnRefKindDifferences || _considerReturnType) && !HaveSameReturnTypes(member1, typeMap1, member2, typeMap2, _typeComparison))
            {
                return(false);
            }

            if (member1.GetParameterCount() > 0 && !HaveSameParameterTypes(member1.GetParameters(), typeMap1, member2.GetParameters(), typeMap2,
                                                                           _considerRefKindDifferences, _typeComparison))
            {
                return(false);
            }

            if (_considerCallingConvention)
            {
                if (GetCallingConvention(member1) != GetCallingConvention(member2))
                {
                    return(false);
                }
            }
            else
            {
                if (IsVarargMethod(member1) != IsVarargMethod(member2))
                {
                    return(false);
                }
            }

            if (_considerExplicitlyImplementedInterfaces)
            {
                if (sawInterfaceInName1 != sawInterfaceInName2)
                {
                    return(false);
                }

                // The purpose of this check is to determine whether the interface parts of the member names agree,
                // but to do so using robust symbolic checks, rather than syntactic ones.  Therefore, if neither member
                // name contains an interface name, this check is not relevant.
                // Phrased differently, the explicitly implemented interface is not part of the signature unless it's
                // part of the name.
                if (sawInterfaceInName1)
                {
                    Debug.Assert(sawInterfaceInName2);

                    // May avoid realizing interface members.
                    if (member1.IsExplicitInterfaceImplementation() != member2.IsExplicitInterfaceImplementation())
                    {
                        return(false);
                    }

                    // By comparing symbols, rather than syntax, we gain the flexibility of ignoring whitespace
                    // and gracefully accepting multiple names for the same (or equivalent) types (e.g. "I<int>.M"
                    // vs "I<System.Int32>.M"), but we lose the connection with the name.  For example, in metadata,
                    // a method name "I.M" could have nothing to do with "I" but explicitly implement interface "I2".
                    // We will behave as if the method was really named "I2.M".  Furthermore, in metadata, a method
                    // can explicitly implement more than one interface method, in which case it doesn't really
                    // make sense to pretend that all of them are part of the signature.

                    var explicitInterfaceImplementations1 = member1.GetExplicitInterfaceImplementations();
                    var explicitInterfaceImplementations2 = member2.GetExplicitInterfaceImplementations();

                    if (!explicitInterfaceImplementations1.SetEquals(explicitInterfaceImplementations2, EqualityComparer <Symbol> .Default))
                    {
                        return(false);
                    }
                }
            }

            return(!_considerTypeConstraints || HaveSameConstraints(member1, typeMap1, member2, typeMap2));
        }
예제 #4
0
        internal SourceCustomEventSymbol(SourceMemberContainerTypeSymbol containingType, Binder binder, EventDeclarationSyntax syntax, DiagnosticBag diagnostics) :
            base(containingType, syntax, syntax.Modifiers, syntax.ExplicitInterfaceSpecifier, syntax.Identifier, diagnostics)
        {
            ExplicitInterfaceSpecifierSyntax interfaceSpecifier = syntax.ExplicitInterfaceSpecifier;
            SyntaxToken nameToken = syntax.Identifier;
            bool        isExplicitInterfaceImplementation = interfaceSpecifier != null;

            string aliasQualifierOpt;

            _name = ExplicitInterfaceHelpers.GetMemberNameAndInterfaceSymbol(binder, interfaceSpecifier, nameToken.ValueText, diagnostics, out _explicitInterfaceType, out aliasQualifierOpt);

            _type = BindEventType(binder, syntax.Type, diagnostics);

            var explicitlyImplementedEvent = this.FindExplicitlyImplementedEvent(_explicitInterfaceType, nameToken.ValueText, interfaceSpecifier, diagnostics);

            this.FindExplicitlyImplementedMemberVerification(explicitlyImplementedEvent, diagnostics);

            // The runtime will not treat the accessors of this event as overrides or implementations
            // of those of another event unless both the signatures and the custom modifiers match.
            // Hence, in the case of overrides and *explicit* implementations, we need to copy the custom
            // modifiers that are in the signatures of the overridden/implemented event accessors.
            // (From source, we know that there can only be one overridden/implemented event, so there
            // are no conflicts.)  This is unnecessary for implicit implementations because, if the custom
            // modifiers don't match, we'll insert bridge methods for the accessors (explicit implementations
            // that delegate to the implicit implementations) with the correct custom modifiers
            // (see SourceMemberContainerTypeSymbol.SynthesizeInterfaceMemberImplementation).

            // Note: we're checking if the syntax indicates explicit implementation rather,
            // than if explicitInterfaceType is null because we don't want to look for an
            // overridden event if this is supposed to be an explicit implementation.
            if (!isExplicitInterfaceImplementation)
            {
                // If this event is an override, we may need to copy custom modifiers from
                // the overridden event (so that the runtime will recognize it as an override).
                // We check for this case here, while we can still modify the parameters and
                // return type without losing the appearance of immutability.
                if (this.IsOverride)
                {
                    EventSymbol overriddenEvent = this.OverriddenEvent;
                    if ((object)overriddenEvent != null)
                    {
                        CopyEventCustomModifiers(overriddenEvent, ref _type, ContainingAssembly);
                    }
                }
            }
            else if ((object)explicitlyImplementedEvent != null)
            {
                CopyEventCustomModifiers(explicitlyImplementedEvent, ref _type, ContainingAssembly);
            }

            AccessorDeclarationSyntax addSyntax    = null;
            AccessorDeclarationSyntax removeSyntax = null;

            foreach (AccessorDeclarationSyntax accessor in syntax.AccessorList.Accessors)
            {
                switch (accessor.Kind())
                {
                case SyntaxKind.AddAccessorDeclaration:
                    if (addSyntax == null)
                    {
                        addSyntax = accessor;
                    }
                    else
                    {
                        diagnostics.Add(ErrorCode.ERR_DuplicateAccessor, accessor.Keyword.GetLocation());
                    }
                    break;

                case SyntaxKind.RemoveAccessorDeclaration:
                    if (removeSyntax == null)
                    {
                        removeSyntax = accessor;
                    }
                    else
                    {
                        diagnostics.Add(ErrorCode.ERR_DuplicateAccessor, accessor.Keyword.GetLocation());
                    }
                    break;

                case SyntaxKind.GetAccessorDeclaration:
                case SyntaxKind.SetAccessorDeclaration:
                    diagnostics.Add(ErrorCode.ERR_AddOrRemoveExpected, accessor.Keyword.GetLocation());
                    break;

                case SyntaxKind.UnknownAccessorDeclaration:
                    // Don't need to handle UnknownAccessorDeclaration.  An error will have
                    // already been produced for it in the parser.
                    break;

                default:
                    throw ExceptionUtilities.UnexpectedValue(accessor.Kind());
                }
            }

            _addMethod    = CreateAccessorSymbol(addSyntax, explicitlyImplementedEvent, aliasQualifierOpt, diagnostics);
            _removeMethod = CreateAccessorSymbol(removeSyntax, explicitlyImplementedEvent, aliasQualifierOpt, diagnostics);

            if (containingType.IsInterfaceType())
            {
                if (addSyntax == null && removeSyntax == null) //NOTE: AND - different error code produced if one is present
                {
                    // CONSIDER: we're matching dev10, but it would probably be more helpful to give
                    // an error like ERR_EventPropertyInInterface.
                    diagnostics.Add(ErrorCode.ERR_EventNeedsBothAccessors, this.Locations[0], this);
                }
            }
            else
            {
                if (addSyntax == null || removeSyntax == null)
                {
                    diagnostics.Add(ErrorCode.ERR_EventNeedsBothAccessors, this.Locations[0], this);
                }
            }

            _explicitInterfaceImplementations =
                (object)explicitlyImplementedEvent == null ?
                ImmutableArray <EventSymbol> .Empty :
                ImmutableArray.Create <EventSymbol>(explicitlyImplementedEvent);
        }
        internal SourceCustomEventAccessorSymbol(
            SourceEventSymbol @event,
            AccessorDeclarationSyntax syntax,
            EventSymbol explicitlyImplementedEventOpt,
            string aliasQualifierOpt,
            DiagnosticBag diagnostics)
            : base(@event,
                   syntax.GetReference(),
                   ImmutableArray.Create(syntax.Keyword.GetLocation()))
        {
            Debug.Assert(syntax != null);
            Debug.Assert(syntax.Kind() == SyntaxKind.AddAccessorDeclaration || syntax.Kind() == SyntaxKind.RemoveAccessorDeclaration);

            bool isAdder = syntax.Kind() == SyntaxKind.AddAccessorDeclaration;

            string name;
            ImmutableArray <MethodSymbol> explicitInterfaceImplementations;

            if ((object)explicitlyImplementedEventOpt == null)
            {
                name = SourceEventSymbol.GetAccessorName(@event.Name, isAdder);
                explicitInterfaceImplementations = ImmutableArray <MethodSymbol> .Empty;
            }
            else
            {
                MethodSymbol implementedAccessor = isAdder ? explicitlyImplementedEventOpt.AddMethod : explicitlyImplementedEventOpt.RemoveMethod;
                string       accessorName        = (object)implementedAccessor != null ? implementedAccessor.Name : SourceEventSymbol.GetAccessorName(explicitlyImplementedEventOpt.Name, isAdder);

                name = ExplicitInterfaceHelpers.GetMemberName(accessorName, explicitlyImplementedEventOpt.ContainingType, aliasQualifierOpt);
                explicitInterfaceImplementations = (object)implementedAccessor == null ? ImmutableArray <MethodSymbol> .Empty : ImmutableArray.Create <MethodSymbol>(implementedAccessor);
            }

            _explicitInterfaceImplementations = explicitInterfaceImplementations;
            _name = name;
            this.MakeFlags(
                isAdder ? MethodKind.EventAdd : MethodKind.EventRemove,
                @event.Modifiers,
                returnsVoid: false, // until we learn otherwise (in LazyMethodChecks).
                isExtensionMethod: false,
                isMetadataVirtualIgnoringModifiers: explicitInterfaceImplementations.Any());

            if (@event.ContainingType.IsInterface)
            {
                diagnostics.Add(ErrorCode.ERR_EventPropertyInInterface, this.Location);
            }
            else
            {
                if (syntax.Body != null || syntax.ExpressionBody != null)
                {
                    if (IsExtern && !IsAbstract)
                    {
                        diagnostics.Add(ErrorCode.ERR_ExternHasBody, this.Location, this);
                    }
                    else if (IsAbstract && !IsExtern)
                    {
                        diagnostics.Add(ErrorCode.ERR_AbstractHasBody, this.Location, this);
                    }
                    // Do not report error for IsAbstract && IsExtern. Dev10 reports CS0180 only
                    // in that case ("member cannot be both extern and abstract").
                }
            }

            _name = GetOverriddenAccessorName(@event, isAdder) ?? _name;

            if (syntax.Modifiers.Count > 0)
            {
                diagnostics.Add(ErrorCode.ERR_NoModifiersOnAccessor, syntax.Modifiers[0].GetLocation());
            }

            CheckForBlockAndExpressionBody(
                syntax.Body, syntax.ExpressionBody, syntax, diagnostics);
        }