예제 #1
0
        public static Matrix Homography(List<Matrix> worldPoints, List<System.Drawing.PointF> imagePoints)
        {
            int n = worldPoints.Count;

            // normalize image coordinates
            var mu = new Matrix(2, 1);
            for (int i = 0; i < n; i++)
            {
                mu[0] += imagePoints[i].X;
                mu[1] += imagePoints[i].Y;
            }
            mu.Scale(1.0 / n);
            var muAbs = new Matrix(2, 1);
            for (int i = 0; i < n; i++)
            {
                muAbs[0] += Math.Abs(imagePoints[i].X - mu[0]);
                muAbs[1] += Math.Abs(imagePoints[i].Y - mu[1]);
            }
            muAbs.Scale(1.0 / n);

            var Hnorm = Matrix.Identity(3, 3);
            Hnorm[0, 0] = 1 / muAbs[0];
            Hnorm[1, 1] = 1 / muAbs[1];
            Hnorm[0, 2] = -mu[0] / muAbs[0];
            Hnorm[1, 2] = -mu[1] / muAbs[1];

            var invHnorm = Matrix.Identity(3, 3);
            invHnorm[0, 0] = muAbs[0];
            invHnorm[1, 1] = muAbs[1];
            invHnorm[0, 2] = mu[0];
            invHnorm[1, 2] = mu[1];


            var A = Matrix.Zero(2 * n, 9);
            for (int i = 0; i < n; i++)
            {
                var X = worldPoints[i];
                var imagePoint = imagePoints[i];

                var x = new Matrix(3, 1);
                x[0] = imagePoint.X;
                x[1] = imagePoint.Y;
                x[2] = 1;

                var xn = new Matrix(3, 1);
                xn.Mult(Hnorm, x);
 
                // Zhang's formulation; Hartley's is similar
                int ii = 2 * i;
                A[ii, 0] = X[0];
                A[ii, 1] = X[1];
                A[ii, 2] = 1;

                A[ii, 6] = -xn[0] * X[0];
                A[ii, 7] = -xn[0] * X[1];
                A[ii, 8] = -xn[0];

                ii++; // next row
                A[ii, 3] = X[0];
                A[ii, 4] = X[1];
                A[ii, 5] = 1;

                A[ii, 6] = -xn[1] * X[0];
                A[ii, 7] = -xn[1] * X[1];
                A[ii, 8] = -xn[1];
            }

            // h is the eigenvector of ATA with the smallest eignvalue
            var h = new Matrix(9, 1);
            {
                var ATA = new Matrix(9, 9);
                ATA.MultATA(A, A);

                var V = new Matrix(9, 9);
                var ww = new Matrix(9, 1);
                ATA.Eig(V, ww);

                h.CopyCol(V, 0);
            }

            var Hn = new Matrix(3, 3);
            Hn.Reshape(h);

            var H = new Matrix(3, 3);
            H.Mult(invHnorm, Hn);

            return H;
        }
예제 #2
0
        // Use DLT to obtain estimate of calibration rig pose; in our case this is the pose of the Kinect camera.
        // This pose estimate will provide a good initial estimate for subsequent projector calibration.
        // Note for a full PnP solution we should probably refine with Levenberg-Marquardt.
        // DLT is described in Hartley and Zisserman p. 178
        public static void DLT(Matrix cameraMatrix, Matrix distCoeffs, List<Matrix> worldPoints, List<System.Drawing.PointF> imagePoints, out Matrix R, out Matrix t)
        {
            int n = worldPoints.Count;

            var A = Matrix.Zero(2 * n, 12);

            for (int j = 0; j < n; j++)
            {
                var X = worldPoints[j];
                var imagePoint = imagePoints[j];

                double x, y;
                Undistort(cameraMatrix, distCoeffs, imagePoint.X, imagePoint.Y, out x, out y);

                int ii = 2 * j;
                A[ii, 4] = -X[0];
                A[ii, 5] = -X[1];
                A[ii, 6] = -X[2];
                A[ii, 7] = -1;

                A[ii, 8] = y * X[0];
                A[ii, 9] = y * X[1];
                A[ii, 10] = y * X[2];
                A[ii, 11] = y;

                ii++; // next row
                A[ii, 0] = X[0];
                A[ii, 1] = X[1];
                A[ii, 2] = X[2];
                A[ii, 3] = 1;

                A[ii, 8] = -x * X[0];
                A[ii, 9] = -x * X[1];
                A[ii, 10] = -x * X[2];
                A[ii, 11] = -x;
            }

            // Pcolumn is the eigenvector of ATA with the smallest eignvalue
            var Pcolumn = new Matrix(12, 1);
            {
                var ATA = new Matrix(12, 12);
                ATA.MultATA(A, A);

                var V = new Matrix(12, 12);
                var ww = new Matrix(12, 1);
                ATA.Eig(V, ww);

                Pcolumn.CopyCol(V, 0);
            }

            // reshape into 3x4 projection matrix
            var P = new Matrix(3, 4);
            P.Reshape(Pcolumn);

            R = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    R[i, j] = P[i, j];

            if (R.Det3x3() < 0)
            {
                R.Scale(-1);
                P.Scale(-1);
            }

            // orthogonalize R
            {
                var U = new Matrix(3, 3);
                var V = new Matrix(3, 3);
                var ww = new Matrix(3, 1);
                R.SVD(U, ww, V);
                R.MultAAT(U, V);
            }

            // determine scale factor
            var RP = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    RP[i, j] = P[i, j];
            double s = RP.Norm() / R.Norm();

            t = new Matrix(3, 1);
            for (int i = 0; i < 3; i++)
                t[i] = P[i, 3];
            t.Scale(1.0 / s);
        }
예제 #3
0
        static public void PlaneFit(IList<Matrix> X, out Matrix R, out Matrix t, out Matrix d2)
        {
            int n = X.Count;

            var mu = new Matrix(3, 1);
            for (int i = 0; i < n; i++)
                mu.Add(X[i]);
            mu.Scale(1f / (float)n);

            var A = new Matrix(3, 3);
            var xc = new Matrix(3, 1);
            var M = new Matrix(3, 3);
            for (int i = 0; i < X.Count; i++)
            {
                var x = X[i];
                xc.Sub(x, mu);
                M.Outer(xc, xc);
                A.Add(M);
            }
            var V = new Matrix(3, 3);
            var d = new Matrix(3, 1);
            A.Eig(V, d); // eigenvalues in ascending order

            // arrange in descending order so that z = 0
            var V2 = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
            {
                V2[i, 2] = V[i, 0];
                V2[i, 1] = V[i, 1];
                V2[i, 0] = V[i, 2];
            }

            d2 = new Matrix(3, 1);
            d2[2] = d[0];
            d2[1] = d[1];
            d2[0] = d[2];

            R = new Matrix(3, 3);
            R.Transpose(V2);

            if (R.Det3x3() < 0)
                R.Scale(-1);

            t = new Matrix(3, 1);
            t.Mult(R, mu);
            t.Scale(-1);

            // eigenvalues are the sum of squared distances in each direction
            // i.e., min eigenvalue is the sum of squared distances to the plane = d2[2]

            // compute the distance to the plane by transforming to the plane and take z-coordinate:
            // xPlane = R*x + t; distance = xPlane[2]
        }
예제 #4
0
        // Use DLT to obtain estimate of calibration rig pose; in our case this is the pose of the Kinect camera.
        // This pose estimate will provide a good initial estimate for subsequent projector calibration.
        // Note for a full PnP solution we should probably refine with Levenberg-Marquardt.
        // DLT is described in Hartley and Zisserman p. 178
        public static void DLT(Matrix cameraMatrix, Matrix distCoeffs, List <Matrix> worldPoints, List <System.Drawing.PointF> imagePoints, out Matrix R, out Matrix t)
        {
            int n = worldPoints.Count;

            var A = Matrix.Zero(2 * n, 12);

            for (int j = 0; j < n; j++)
            {
                var X          = worldPoints[j];
                var imagePoint = imagePoints[j];

                double x, y;
                Undistort(cameraMatrix, distCoeffs, imagePoint.X, imagePoint.Y, out x, out y);

                int ii = 2 * j;
                A[ii, 4] = -X[0];
                A[ii, 5] = -X[1];
                A[ii, 6] = -X[2];
                A[ii, 7] = -1;

                A[ii, 8]  = y * X[0];
                A[ii, 9]  = y * X[1];
                A[ii, 10] = y * X[2];
                A[ii, 11] = y;

                ii++; // next row
                A[ii, 0] = X[0];
                A[ii, 1] = X[1];
                A[ii, 2] = X[2];
                A[ii, 3] = 1;

                A[ii, 8]  = -x * X[0];
                A[ii, 9]  = -x * X[1];
                A[ii, 10] = -x * X[2];
                A[ii, 11] = -x;
            }

            // Pcolumn is the eigenvector of ATA with the smallest eignvalue
            var Pcolumn = new Matrix(12, 1);
            {
                var ATA = new Matrix(12, 12);
                ATA.MultATA(A, A);

                var V  = new Matrix(12, 12);
                var ww = new Matrix(12, 1);
                ATA.Eig(V, ww);

                Pcolumn.CopyCol(V, 0);
            }

            // reshape into 3x4 projection matrix
            var P = new Matrix(3, 4);

            P.Reshape(Pcolumn);

            R = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
            {
                for (int j = 0; j < 3; j++)
                {
                    R[i, j] = P[i, j];
                }
            }

            if (R.Det3x3() < 0)
            {
                R.Scale(-1);
                P.Scale(-1);
            }

            // orthogonalize R
            {
                var U  = new Matrix(3, 3);
                var V  = new Matrix(3, 3);
                var ww = new Matrix(3, 1);
                R.SVD(U, ww, V);
                R.MultAAT(U, V);
            }

            // determine scale factor
            var RP = new Matrix(3, 3);

            for (int i = 0; i < 3; i++)
            {
                for (int j = 0; j < 3; j++)
                {
                    RP[i, j] = P[i, j];
                }
            }
            double s = RP.Norm() / R.Norm();

            t = new Matrix(3, 1);
            for (int i = 0; i < 3; i++)
            {
                t[i] = P[i, 3];
            }
            t.Scale(1.0 / s);
        }
예제 #5
0
        public static Matrix Homography(List <Matrix> worldPoints, List <System.Drawing.PointF> imagePoints)
        {
            int n = worldPoints.Count;

            // normalize image coordinates
            var mu = new Matrix(2, 1);

            for (int i = 0; i < n; i++)
            {
                mu[0] += imagePoints[i].X;
                mu[1] += imagePoints[i].Y;
            }
            mu.Scale(1.0 / n);
            var muAbs = new Matrix(2, 1);

            for (int i = 0; i < n; i++)
            {
                muAbs[0] += Math.Abs(imagePoints[i].X - mu[0]);
                muAbs[1] += Math.Abs(imagePoints[i].Y - mu[1]);
            }
            muAbs.Scale(1.0 / n);

            var Hnorm = Matrix.Identity(3, 3);

            Hnorm[0, 0] = 1 / muAbs[0];
            Hnorm[1, 1] = 1 / muAbs[1];
            Hnorm[0, 2] = -mu[0] / muAbs[0];
            Hnorm[1, 2] = -mu[1] / muAbs[1];

            var invHnorm = Matrix.Identity(3, 3);

            invHnorm[0, 0] = muAbs[0];
            invHnorm[1, 1] = muAbs[1];
            invHnorm[0, 2] = mu[0];
            invHnorm[1, 2] = mu[1];


            var A = Matrix.Zero(2 * n, 9);

            for (int i = 0; i < n; i++)
            {
                var X          = worldPoints[i];
                var imagePoint = imagePoints[i];

                var x = new Matrix(3, 1);
                x[0] = imagePoint.X;
                x[1] = imagePoint.Y;
                x[2] = 1;

                var xn = new Matrix(3, 1);
                xn.Mult(Hnorm, x);

                // Zhang's formulation; Hartley's is similar
                int ii = 2 * i;
                A[ii, 0] = X[0];
                A[ii, 1] = X[1];
                A[ii, 2] = 1;

                A[ii, 6] = -xn[0] * X[0];
                A[ii, 7] = -xn[0] * X[1];
                A[ii, 8] = -xn[0];

                ii++; // next row
                A[ii, 3] = X[0];
                A[ii, 4] = X[1];
                A[ii, 5] = 1;

                A[ii, 6] = -xn[1] * X[0];
                A[ii, 7] = -xn[1] * X[1];
                A[ii, 8] = -xn[1];
            }

            // h is the eigenvector of ATA with the smallest eignvalue
            var h = new Matrix(9, 1);
            {
                var ATA = new Matrix(9, 9);
                ATA.MultATA(A, A);

                var V  = new Matrix(9, 9);
                var ww = new Matrix(9, 1);
                ATA.Eig(V, ww);

                h.CopyCol(V, 0);
            }

            var Hn = new Matrix(3, 3);

            Hn.Reshape(h);

            var H = new Matrix(3, 3);

            H.Mult(invHnorm, Hn);

            return(H);
        }
예제 #6
0
        static public void PlaneFit(IList <Matrix> X, out Matrix R, out Matrix t, out Matrix d2)
        {
            int n = X.Count;

            var mu = new Matrix(3, 1);

            for (int i = 0; i < n; i++)
            {
                mu.Add(X[i]);
            }
            mu.Scale(1f / (float)n);

            var A  = new Matrix(3, 3);
            var xc = new Matrix(3, 1);
            var M  = new Matrix(3, 3);

            for (int i = 0; i < X.Count; i++)
            {
                var x = X[i];
                xc.Sub(x, mu);
                M.Outer(xc, xc);
                A.Add(M);
            }
            var V = new Matrix(3, 3);
            var d = new Matrix(3, 1);

            A.Eig(V, d); // eigenvalues in ascending order

            // arrange in descending order so that z = 0
            var V2 = new Matrix(3, 3);

            for (int i = 0; i < 3; i++)
            {
                V2[i, 2] = V[i, 0];
                V2[i, 1] = V[i, 1];
                V2[i, 0] = V[i, 2];
            }

            d2    = new Matrix(3, 1);
            d2[2] = d[0];
            d2[1] = d[1];
            d2[0] = d[2];

            R = new Matrix(3, 3);
            R.Transpose(V2);

            if (R.Det3x3() < 0)
            {
                R.Scale(-1);
            }

            t = new Matrix(3, 1);
            t.Mult(R, mu);
            t.Scale(-1);

            // eigenvalues are the sum of squared distances in each direction
            // i.e., min eigenvalue is the sum of squared distances to the plane = d2[2]

            // compute the distance to the plane by transforming to the plane and take z-coordinate:
            // xPlane = R*x + t; distance = xPlane[2]
        }
예제 #7
0
        public static double PlaneFit(IList<Matrix> points, out Matrix X, out double D)
        {
            X = new Matrix(3, 1);

            var mu = new RoomAliveToolkit.Matrix(3, 1);
            for (int i = 0; i < points.Count; i++)
                mu.Add(points[i]);
            mu.Scale(1f / (float)points.Count);

            var A = new RoomAliveToolkit.Matrix(3, 3);
            var pc = new RoomAliveToolkit.Matrix(3, 1);
            var M = new RoomAliveToolkit.Matrix(3, 3);
            for (int i = 0; i < points.Count; i++)
            {
                var p = points[i];
                pc.Sub(p, mu);
                M.Outer(pc, pc);
                A.Add(M);
            }

            var V = new RoomAliveToolkit.Matrix(3, 3);
            var d = new RoomAliveToolkit.Matrix(3, 1);
            A.Eig(V, d); // TODO: replace with 3x3 version?

            //Console.WriteLine("------");
            //Console.WriteLine(A);
            //Console.WriteLine(V);
            //Console.WriteLine(d);

            double minEigenvalue = Double.MaxValue;
            int minEigenvaluei = 0;
            for (int i = 0; i < 3; i++)
                if (d[i] < minEigenvalue)
                {
                    minEigenvalue = d[i];
                    minEigenvaluei = i;
                }

            X.CopyCol(V, minEigenvaluei);

            D = -X.Dot(mu);

            // min eigenvalue is the sum of squared distances to the plane
            // signed distance is: double distance = X.Dot(point) + D;

            return minEigenvalue;
        }