public static Vector2 GetCircumcenter(DelaunayTriangle triangle) { Vector2 a = triangle.Points[0].ToVector2(); Vector2 b = triangle.Points[1].ToVector2(); Vector2 c = triangle.Points[2].ToVector2(); return GetCircumcenter(a, b, c); }
public static float GetCircumradius(DelaunayTriangle triangle) { Vector2 a = triangle.Points[0].ToVector2(); Vector2 b = triangle.Points[1].ToVector2(); Vector2 c = triangle.Points[2].ToVector2(); return GetCircumradius(a, b, c); }
/// <summary> /// Exhaustive search to update neighbor pointers /// </summary> public void MarkNeighbor( DelaunayTriangle t ) { // Points of this triangle also belonging to t bool a = t.Contains(Points[0]); bool b = t.Contains(Points[1]); bool c = t.Contains(Points[2]); if (b&&c) { Neighbors[0]=t; t.MarkNeighbor(Points[1],Points[2],this); } else if (a&&c) { Neighbors[1]=t; t.MarkNeighbor(Points[0],Points[2],this); } else if (a&&b) { Neighbors[2]=t; t.MarkNeighbor(Points[0],Points[1],this); } else throw new Exception( "Failed to mark neighbor, doesn't share an edge!"); }
public void ClearNeighbor(DelaunayTriangle triangle) { if (Neighbors[0] == triangle) { Neighbors[0] = null; } else if (Neighbors[1] == triangle) { Neighbors[1] = null; } else if (Neighbors[2] == triangle) { Neighbors[2] = null; } }
private static void EdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle triangle, TriangulationPoint point) { TriangulationPoint p1, p2; if (tcx.IsDebugEnabled) { tcx.DTDebugContext.PrimaryTriangle = triangle; } if (IsEdgeSideOfTriangle(triangle, ep, eq)) { return; } p1 = triangle.PointCCWFrom(point); Orientation o1 = TriangulationUtil.Orient2d(eq, p1, ep); if (o1 == Orientation.Collinear) { if (triangle.Contains(eq) && triangle.Contains(p1)) { triangle.MarkConstrainedEdge(eq, p1); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p1; triangle = triangle.NeighborAcrossFrom(point); EdgeEvent(tcx, ep, p1, triangle, p1); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", ep, eq, p1); } if (tcx.IsDebugEnabled) { Console.WriteLine("EdgeEvent - Point on constrained edge"); } return; } p2 = triangle.PointCWFrom(point); Orientation o2 = TriangulationUtil.Orient2d(eq, p2, ep); if (o2 == Orientation.Collinear) { if (triangle.Contains(eq) && triangle.Contains(p2)) { triangle.MarkConstrainedEdge(eq, p2); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p2; triangle = triangle.NeighborAcrossFrom(point); EdgeEvent(tcx, ep, p2, triangle, p2); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", ep, eq, p2); } if (tcx.IsDebugEnabled) { Console.WriteLine("EdgeEvent - Point on constrained edge"); } return; } if (o1 == o2) { // Need to decide if we are rotating CW or CCW to get to a triangle // that will cross edge if (o1 == Orientation.CW) { triangle = triangle.NeighborCCWFrom(point); } else { triangle = triangle.NeighborCWFrom(point); } EdgeEvent(tcx, ep, eq, triangle, point); } else { // This triangle crosses constraint so lets flippin start! FlipEdgeEvent(tcx, ep, eq, triangle, point); } }
public override void AddTriangle(DelaunayTriangle t) { Triangles.Add(t); }
/// <param name="t">Opposite triangle</param> /// <param name="p">The point in t that isn't shared between the triangles</param> public TriangulationPoint OppositePoint(DelaunayTriangle t, TriangulationPoint p) { Debug.Assert(t != this, "self-pointer error"); return(PointCWFrom(t.PointCWFrom(p))); }
private static Rectangle GetRectangle(DelaunayTriangle triangle) { return GetBoundingRectangle(triangle.Points); }
/// <summary> /// Scan part of the FlipScan algorithm<br/> /// When a triangle pair isn't flippable we will scan for the next /// point that is inside the flip triangle scan area. When found /// we generate a new flipEdgeEvent /// </summary> /// <param name="tcx"></param> /// <param name="ep">last point on the edge we are traversing</param> /// <param name="eq">first point on the edge we are traversing</param> /// <param name="flipTriangle">the current triangle sharing the point eq with edge</param> /// <param name="t"></param> /// <param name="p"></param> private static void FlipScanEdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle flipTriangle, DelaunayTriangle t, TriangulationPoint p) { DelaunayTriangle ot; TriangulationPoint op, newP; bool inScanArea; ot = t.NeighborAcrossFrom(p); op = ot.OppositePoint(t, p); if (ot == null) { // If we want to integrate the fillEdgeEvent do it here // With current implementation we should never get here throw new Exception("[BUG:FIXME] FLIP failed due to missing triangle"); } if (tcx.IsDebugEnabled) { Console.WriteLine("[FLIP:SCAN] - scan next point"); // TODO: remove tcx.DTDebugContext.PrimaryTriangle = t; tcx.DTDebugContext.SecondaryTriangle = ot; } inScanArea = TriangulationUtil.InScanArea(eq, flipTriangle.PointCCWFrom(eq), flipTriangle.PointCWFrom(eq), op); if (inScanArea) { // flip with new edge op->eq FlipEdgeEvent(tcx, eq, op, ot, op); // TODO: Actually I just figured out that it should be possible to // improve this by getting the next ot and op before the the above // flip and continue the flipScanEdgeEvent here // set new ot and op here and loop back to inScanArea test // also need to set a new flipTriangle first // Turns out at first glance that this is somewhat complicated // so it will have to wait. } else { newP = NextFlipPoint(ep, eq, ot, op); FlipScanEdgeEvent(tcx, ep, eq, flipTriangle, ot, newP); } }
private static void EdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle triangle, TriangulationPoint point) { TriangulationPoint p1, p2; if (tcx.IsDebugEnabled) tcx.DTDebugContext.PrimaryTriangle = triangle; if (IsEdgeSideOfTriangle(triangle, ep, eq)) return; p1 = triangle.PointCCWFrom(point); Orientation o1 = TriangulationUtil.Orient2d(eq, p1, ep); if (o1 == Orientation.Collinear) { // TODO: Split edge in two //// splitEdge( ep, eq, p1 ); // edgeEvent( tcx, p1, eq, triangle, point ); // edgeEvent( tcx, ep, p1, triangle, p1 ); // return; throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", eq, p1, ep); } p2 = triangle.PointCWFrom(point); Orientation o2 = TriangulationUtil.Orient2d(eq, p2, ep); if (o2 == Orientation.Collinear) { // TODO: Split edge in two // edgeEvent( tcx, p2, eq, triangle, point ); // edgeEvent( tcx, ep, p2, triangle, p2 ); // return; throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", eq, p2, ep); } if (o1 == o2) { // Need to decide if we are rotating CW or CCW to get to a triangle // that will cross edge if (o1 == Orientation.CW) { triangle = triangle.NeighborCCWFrom(point); } else { triangle = triangle.NeighborCWFrom(point); } EdgeEvent(tcx, ep, eq, triangle, point); } else { // This triangle crosses constraint so lets flippin start! FlipEdgeEvent(tcx, ep, eq, triangle, point); } }
public static IList<DelaunayTriangle> GetSurroundingTriangles( DelaunayTriangle triangle, TriangulationPoint point) { IList<DelaunayTriangle> surroundingTriangles = new List<DelaunayTriangle>(); DelaunayTriangle startTriangle = triangle; DelaunayTriangle currentTriangle = triangle; do { surroundingTriangles.Add(currentTriangle); currentTriangle = currentTriangle.NeighborCWFrom(point); } while ((currentTriangle != null) && (currentTriangle != startTriangle)); return surroundingTriangles; }
private IReadOnlyList<TriangulationPoint> UnpackTriangle(DelaunayTriangle t) { return new[] { t.Points[0], t.Points[1], t.Points[2] }; }
public void addToList(DelaunayTriangle triangle) { _triList.Add(triangle); }
public void addTriangle(DelaunayTriangle t) { _triangles.Add(t); }
/// <param name="t">Opposite triangle</param> /// <param name="p">The point in t that isn't shared between the triangles</param> public TriangulationPoint OppositePoint(DelaunayTriangle t, TriangulationPoint p) { Debug.Assert(t != this, "self-pointer error"); return PointCWFrom(t.PointCWFrom(p)); }
/// <summary> /// Creates a new front triangle and legalize it /// </summary> private static AdvancingFrontNode NewFrontTriangle(DTSweepContext tcx, TriangulationPoint point, AdvancingFrontNode node) { AdvancingFrontNode newNode; DelaunayTriangle triangle; triangle = new DelaunayTriangle(point, node.Point, node.Next.Point); triangle.MarkNeighbor(node.Triangle); tcx.Triangles.Add(triangle); newNode = new AdvancingFrontNode(point); newNode.Next = node.Next; newNode.Prev = node; node.Next.Prev = newNode; node.Next = newNode; tcx.AddNode(newNode); // XXX: BST if (tcx.IsDebugEnabled) tcx.DTDebugContext.ActiveNode = newNode; if (!Legalize(tcx, triangle)) tcx.MapTriangleToNodes(triangle); return newNode; }
private static void EdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle triangle, TriangulationPoint point) { TriangulationPoint p1, p2; if (tcx.IsDebugEnabled) { tcx.DTDebugContext.PrimaryTriangle = triangle; } if (IsEdgeSideOfTriangle(triangle, ep, eq)) { return; } p1 = triangle.PointCCWFrom(point); Orientation o1 = TriangulationUtil.Orient2d(eq, p1, ep); if (o1 == Orientation.Collinear) { if (triangle.Contains(eq) && triangle.Contains(p1)) { triangle.MarkConstrainedEdge(eq, p1); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p1; triangle = triangle.NeighborAcrossFrom(point); EdgeEvent(tcx, ep, p1, triangle, p1); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", ep, eq, p1); } if (tcx.IsDebugEnabled) { // Console.WriteLine("EdgeEvent - Point on constrained edge"); } return; } p2 = triangle.PointCWFrom(point); Orientation o2 = TriangulationUtil.Orient2d(eq, p2, ep); if (o2 == Orientation.Collinear) { if (triangle.Contains(eq) && triangle.Contains(p2)) { triangle.MarkConstrainedEdge(eq, p2); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p2; triangle = triangle.NeighborAcrossFrom(point); EdgeEvent(tcx, ep, p2, triangle, p2); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", ep, eq, p2); } if (tcx.IsDebugEnabled) { // Console.WriteLine("EdgeEvent - Point on constrained edge"); } return; } if (o1 == o2) { // Need to decide if we are rotating CW or CCW to get to a triangle // that will cross edge if (o1 == Orientation.CW) { triangle = triangle.NeighborCCWFrom(point); } else { triangle = triangle.NeighborCWFrom(point); } EdgeEvent(tcx, ep, eq, triangle, point); } else { // This triangle crosses constraint so lets flippin start! FlipEdgeEvent(tcx, ep, eq, triangle, point); } }
/// <summary> /// When we need to traverse from one triangle to the next we need /// the point in current triangle that is the opposite point to the next /// triangle. /// </summary> private static TriangulationPoint NextFlipPoint(TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle ot, TriangulationPoint op) { Orientation o2d = TriangulationUtil.Orient2d(eq, op, ep); switch (o2d) { case Orientation.CW: return ot.PointCCWFrom(op); case Orientation.CCW: return ot.PointCWFrom(op); case Orientation.Collinear: // TODO: implement support for point on constraint edge throw new PointOnEdgeException("Point on constrained edge not supported yet", eq, op, ep); default: throw new NotImplementedException("Orientation not handled"); } }
private static void edgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle triangle, TriangulationPoint point) { TriangulationPoint p1, p2; if (tcx.isDebugEnabled()) { tcx.getDebugContext().setPrimaryTriangle(triangle); } if (isEdgeSideOfTriangle(triangle, ep, eq)) { return; } p1 = triangle.pointCCW(point); Orientation o1 = orient2d(eq, p1, ep); if (o1 == Orientation.Collinear) { if (triangle.contains(eq, p1)) { triangle.markConstrainedEdge(eq, p1); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.edgeEvent.constrainedEdge.setQ(p1); triangle = triangle.neighborAcross(point); edgeEvent(tcx, ep, p1, triangle, p1); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet"); } if (tcx.isDebugEnabled()) { logger.Info("EdgeEvent - Point on constrained edge"); } return; } p2 = triangle.pointCW(point); Orientation o2 = orient2d(eq, p2, ep); if (o2 == Orientation.Collinear) { if (triangle.contains(eq, p2)) { triangle.markConstrainedEdge(eq, p2); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.edgeEvent.constrainedEdge.setQ(p2); triangle = triangle.neighborAcross(point); edgeEvent(tcx, ep, p2, triangle, p2); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet"); } if (tcx.isDebugEnabled()) { logger.Info("EdgeEvent - Point on constrained edge"); } return; } if (o1 == o2) { // Need to decide if we are rotating CW or CCW to get to a triangle // that will cross edge if (o1 == Orientation.CW) { triangle = triangle.neighborCCW(point); } else { triangle = triangle.neighborCW(point); } edgeEvent(tcx, ep, eq, triangle, point); } else { // This triangle crosses constraint so lets flippin start! flipEdgeEvent(tcx, ep, eq, triangle, point); } }
/// <summary> /// Returns true if triangle was legalized /// </summary> private static bool Legalize(DTSweepContext tcx, DelaunayTriangle t) { // To legalize a triangle we start by finding if any of the three edges // violate the Delaunay condition for (int i = 0; i < 3; i++) { // TODO: fix so that cEdge is always valid when creating new triangles then we can check it here // instead of below with ot if (t.EdgeIsDelaunay[i]) continue; DelaunayTriangle ot = t.Neighbors[i]; if (ot == null) continue; TriangulationPoint p = t.Points[i]; TriangulationPoint op = ot.OppositePoint(t, p); int oi = ot.IndexOf(op); // If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization) // then we should not try to legalize if (ot.EdgeIsConstrained[oi] || ot.EdgeIsDelaunay[oi]) { t.EdgeIsConstrained[i] = ot.EdgeIsConstrained[oi]; // XXX: have no good way of setting this property when creating new triangles so lets set it here continue; } if (!TriangulationUtil.SmartIncircle(p, t.PointCCWFrom(p), t.PointCWFrom(p), op)) continue; // Lets mark this shared edge as Delaunay t.EdgeIsDelaunay[i] = true; ot.EdgeIsDelaunay[oi] = true; // Lets rotate shared edge one vertex CW to legalize it RotateTrianglePair(t, p, ot, op); // We now got one valid Delaunay Edge shared by two triangles // This gives us 4 new edges to check for Delaunay // Make sure that triangle to node mapping is done only one time for a specific triangle if (!Legalize(tcx, t)) tcx.MapTriangleToNodes(t); if (!Legalize(tcx, ot)) tcx.MapTriangleToNodes(ot); // Reset the Delaunay edges, since they only are valid Delaunay edges // until we add a new triangle or point. // XXX: need to think about this. Can these edges be tried after we // return to previous recursive level? t.EdgeIsDelaunay[i] = false; ot.EdgeIsDelaunay[oi] = false; // If triangle have been legalized no need to check the other edges since // the recursive legalization will handles those so we can end here. return true; } return false; }
private static void flipEdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle t, TriangulationPoint p) { TriangulationPoint op, newP; DelaunayTriangle ot; bool _inScanArea; ot = t.neighborAcross(p); op = ot.oppositePoint(t, p); if (ot == null) { // If we want to integrate the fillEdgeEvent do it here // With current implementation we should never get here throw new Exception("[BUG:FIXME] FLIP failed due to missing triangle"); } if (t.getConstrainedEdgeAcross(p)) { throw new Exception("Intersecting Constraints"); } if (tcx.isDebugEnabled()) { tcx.getDebugContext().setPrimaryTriangle(t); tcx.getDebugContext().setSecondaryTriangle(ot); } // TODO: remove _inScanArea = inScanArea(p, t.pointCCW(p), t.pointCW(p), op); if (_inScanArea) { // Lets rotate shared edge one vertex CW rotateTrianglePair(t, p, ot, op); tcx.mapTriangleToNodes(t); tcx.mapTriangleToNodes(ot); if (p == eq && op == ep) { if (eq == tcx.edgeEvent.constrainedEdge.getQ() && ep == tcx.edgeEvent.constrainedEdge.getP()) { if (tcx.isDebugEnabled()) { Console.Out.WriteLine("[FLIP] - constrained edge done"); } // TODO: remove t.markConstrainedEdge(ep, eq); ot.markConstrainedEdge(ep, eq); legalize(tcx, t); legalize(tcx, ot); } else { if (tcx.isDebugEnabled()) { Console.Out.WriteLine("[FLIP] - subedge done"); } // TODO: remove // XXX: I think one of the triangles should be legalized here? } } else { if (tcx.isDebugEnabled()) { Console.Out.WriteLine("[FLIP] - flipping and continuing with triangle still crossing edge"); } // TODO: remove Orientation o = orient2d(eq, op, ep); t = nextFlipTriangle(tcx, o, t, ot, p, op); flipEdgeEvent(tcx, ep, eq, t, p); } } else { newP = nextFlipPoint(ep, eq, ot, op); flipScanEdgeEvent(tcx, ep, eq, t, ot, newP); edgeEvent(tcx, ep, eq, t, p); } }
public void AddTriangle(DelaunayTriangle t) { Triangles.Add(t); }
private static void DrawDelaunayCircumcircles(DelaunayTriangle triangle, Vector2 circumcenter, Graphics graphics) { float circumradius = VoronoiHelper.GetCircumradius(triangle); graphics.DrawEllipse(Pens.Green, circumcenter.X - circumradius, circumcenter.Y - circumradius, 2 * circumradius, 2 * circumradius); }
public void AddTriangle(DelaunayTriangle t) { throw new NotImplementedException("PolyHole.AddTriangle should never get called"); }
public bool IsBadTriangle(DelaunayTriangle triangle) { // Finde die längste Seite // Berechne den Cosinus des Winkels direkt gegenüber (law of cosine) // Das Dreieck ist schlecht, wenn der Wert <= -0.5 ist. return false; }
public void ClearAllNBs() { N0 = N1 = N2 = null; }
/// <summary> /// Returns true if triangle was legalized /// </summary> private static bool Legalize(DTSweepContext tcx, DelaunayTriangle t) { // To legalize a triangle we start by finding if any of the three edges // violate the Delaunay condition for (int i = 0; i < 3; i++) { // TODO: fix so that cEdge is always valid when creating new triangles then we can check it here // instead of below with ot if (t.EdgeIsDelaunay[i]) { continue; } DelaunayTriangle ot = t.Neighbors[i]; if (ot == null) { continue; } TriangulationPoint p = t.Points[i]; TriangulationPoint op = ot.OppositePoint(t, p); int oi = ot.IndexOf(op); // If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization) // then we should not try to legalize if (ot.EdgeIsConstrained[oi] || ot.EdgeIsDelaunay[oi]) { t.EdgeIsConstrained[i] = ot.EdgeIsConstrained[oi]; // XXX: have no good way of setting this property when creating new triangles so lets set it here continue; } if (!TriangulationUtil.SmartIncircle(p, t.PointCCWFrom(p), t.PointCWFrom(p), op)) { continue; } // Lets mark this shared edge as Delaunay t.EdgeIsDelaunay[i] = true; ot.EdgeIsDelaunay[oi] = true; // Lets rotate shared edge one vertex CW to legalize it RotateTrianglePair(t, p, ot, op); // We now got one valid Delaunay Edge shared by two triangles // This gives us 4 new edges to check for Delaunay // Make sure that triangle to node mapping is done only one time for a specific triangle if (!Legalize(tcx, t)) { tcx.MapTriangleToNodes(t); } if (!Legalize(tcx, ot)) { tcx.MapTriangleToNodes(ot); } // Reset the Delaunay edges, since they only are valid Delaunay edges // until we add a new triangle or point. // XXX: need to think about this. Can these edges be tried after we // return to previous recursive level? t.EdgeIsDelaunay[i] = false; ot.EdgeIsDelaunay[oi] = false; // If triangle have been legalized no need to check the other edges since // the recursive legalization will handles those so we can end here. return(true); } return(false); }
public void MarkEdge(DelaunayTriangle triangle) { for (int i = 0; i < 3; i++) if (EdgeIsConstrained[i]) { triangle.MarkConstrainedEdge(Points[(i + 1) % 3], Points[(i + 2) % 3]); } }
/// <summary> /// Rotates a triangle pair one vertex CW /// n2 n2 /// P +-----+ P +-----+ /// | t /| |\ t | /// | / | | \ | /// n1| / |n3 n1| \ |n3 /// | / | after CW | \ | /// |/ oT | | oT \| /// +-----+ oP +-----+ /// n4 n4 /// </summary> private static void RotateTrianglePair(DelaunayTriangle t, TriangulationPoint p, DelaunayTriangle ot, TriangulationPoint op) { DelaunayTriangle n1, n2, n3, n4; n1 = t.NeighborCCWFrom(p); n2 = t.NeighborCWFrom(p); n3 = ot.NeighborCCWFrom(op); n4 = ot.NeighborCWFrom(op); bool ce1, ce2, ce3, ce4; ce1 = t.GetConstrainedEdgeCCW(p); ce2 = t.GetConstrainedEdgeCW(p); ce3 = ot.GetConstrainedEdgeCCW(op); ce4 = ot.GetConstrainedEdgeCW(op); bool de1, de2, de3, de4; de1 = t.GetDelaunayEdgeCCW(p); de2 = t.GetDelaunayEdgeCW(p); de3 = ot.GetDelaunayEdgeCCW(op); de4 = ot.GetDelaunayEdgeCW(op); t.Legalize(p, op); ot.Legalize(op, p); // Remap dEdge ot.SetDelaunayEdgeCCW(p, de1); t.SetDelaunayEdgeCW(p, de2); t.SetDelaunayEdgeCCW(op, de3); ot.SetDelaunayEdgeCW(op, de4); // Remap cEdge ot.SetConstrainedEdgeCCW(p, ce1); t.SetConstrainedEdgeCW(p, ce2); t.SetConstrainedEdgeCCW(op, ce3); ot.SetConstrainedEdgeCW(op, ce4); // Remap neighbors // XXX: might optimize the markNeighbor by keeping track of // what side should be assigned to what neighbor after the // rotation. Now mark neighbor does lots of testing to find // the right side. t.Neighbors.Clear(); ot.Neighbors.Clear(); if (n1 != null) { ot.MarkNeighbor(n1); } if (n2 != null) { t.MarkNeighbor(n2); } if (n3 != null) { t.MarkNeighbor(n3); } if (n4 != null) { ot.MarkNeighbor(n4); } t.MarkNeighbor(ot); }
/// <summary> /// Update neighbor pointers /// </summary> /// <param name="p1">Point 1 of the shared edge</param> /// <param name="p2">Point 2 of the shared edge</param> /// <param name="t">This triangle's new neighbor</param> private void MarkNeighbor(TriangulationPoint p1, TriangulationPoint p2, DelaunayTriangle t) { int i = EdgeIndex(p1, p2); if (i == -1) { throw new Exception("Error marking neighbors -- t doesn't contain edge p1-p2!"); } Neighbors[i] = t; }
private static void EdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle triangle, TriangulationPoint point) { TriangulationPoint p1, p2; if (tcx.IsDebugEnabled) { tcx.DTDebugContext.PrimaryTriangle = triangle; } if (IsEdgeSideOfTriangle(triangle, ep, eq)) { return; } p1 = triangle.PointCCWFrom(point); Orientation o1 = TriangulationUtil.Orient2d(eq, p1, ep); if (o1 == Orientation.Collinear) { // TODO: Split edge in two //// splitEdge( ep, eq, p1 ); // edgeEvent( tcx, p1, eq, triangle, point ); // edgeEvent( tcx, ep, p1, triangle, p1 ); // return; throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", eq, p1, ep); } p2 = triangle.PointCWFrom(point); Orientation o2 = TriangulationUtil.Orient2d(eq, p2, ep); if (o2 == Orientation.Collinear) { // TODO: Split edge in two // edgeEvent( tcx, p2, eq, triangle, point ); // edgeEvent( tcx, ep, p2, triangle, p2 ); // return; throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", eq, p2, ep); } if (o1 == o2) { // Need to decide if we are rotating CW or CCW to get to a triangle // that will cross edge if (o1 == Orientation.CW) { triangle = triangle.NeighborCCWFrom(point); } else { triangle = triangle.NeighborCWFrom(point); } EdgeEvent(tcx, ep, eq, triangle, point); } else { // This triangle crosses constraint so lets flippin start! FlipEdgeEvent(tcx, ep, eq, triangle, point); } }
private static bool IsEdgeSideOfTriangle(DelaunayTriangle triangle, TriangulationPoint ep, TriangulationPoint eq) { int index = triangle.EdgeIndex(ep, eq); if (index == -1) return false; triangle.MarkConstrainedEdge(index); triangle = triangle.Neighbors[index]; if (triangle != null) triangle.MarkConstrainedEdge(ep, eq); return true; }
private static void FlipEdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle t, TriangulationPoint p) { DelaunayTriangle ot = t.NeighborAcrossFrom(p); TriangulationPoint op = ot.OppositePoint(t, p); if (ot == null) { // If we want to integrate the fillEdgeEvent do it here // With current implementation we should never get here throw new InvalidOperationException("[BUG:FIXME] FLIP failed due to missing triangle"); } if (tcx.IsDebugEnabled) { tcx.DTDebugContext.PrimaryTriangle = t; tcx.DTDebugContext.SecondaryTriangle = ot; } // TODO: remove bool inScanArea = TriangulationUtil.InScanArea(p, t.PointCCWFrom(p), t.PointCWFrom(p), op); if (inScanArea) { // Lets rotate shared edge one vertex CW RotateTrianglePair(t, p, ot, op); tcx.MapTriangleToNodes(t); tcx.MapTriangleToNodes(ot); if (p == eq && op == ep) { if (eq == tcx.EdgeEvent.ConstrainedEdge.Q && ep == tcx.EdgeEvent.ConstrainedEdge.P) { if (tcx.IsDebugEnabled) { Console.WriteLine("[FLIP] - constrained edge done"); // TODO: remove } t.MarkConstrainedEdge(ep, eq); ot.MarkConstrainedEdge(ep, eq); Legalize(tcx, t); Legalize(tcx, ot); } else { if (tcx.IsDebugEnabled) { Console.WriteLine("[FLIP] - subedge done"); // TODO: remove } // XXX: I think one of the triangles should be legalized here? } } else { if (tcx.IsDebugEnabled) { Console.WriteLine("[FLIP] - flipping and continuing with triangle still crossing edge"); // TODO: remove } Orientation o = TriangulationUtil.Orient2d(eq, op, ep); t = NextFlipTriangle(tcx, o, t, ot, p, op); FlipEdgeEvent(tcx, ep, eq, t, p); } } else { TriangulationPoint newP = NextFlipPoint(ep, eq, ot, op); FlipScanEdgeEvent(tcx, ep, eq, t, ot, newP); EdgeEvent(tcx, ep, eq, t, p); } }
private static void FlipEdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle t, TriangulationPoint p) { DelaunayTriangle ot = t.NeighborAcrossFrom(p); TriangulationPoint op = ot.OppositePoint(t, p); if (ot == null) { // If we want to integrate the fillEdgeEvent do it here // With current implementation we should never get here throw new InvalidOperationException("[BUG:FIXME] FLIP failed due to missing triangle"); } if (tcx.IsDebugEnabled) { tcx.DTDebugContext.PrimaryTriangle = t; tcx.DTDebugContext.SecondaryTriangle = ot; } // TODO: remove bool inScanArea = TriangulationUtil.InScanArea(p, t.PointCCWFrom(p), t.PointCWFrom(p), op); if (inScanArea) { // Lets rotate shared edge one vertex CW RotateTrianglePair(t, p, ot, op); tcx.MapTriangleToNodes(t); tcx.MapTriangleToNodes(ot); if (p == eq && op == ep) { if (eq == tcx.EdgeEvent.ConstrainedEdge.Q && ep == tcx.EdgeEvent.ConstrainedEdge.P) { if (tcx.IsDebugEnabled) Console.WriteLine("[FLIP] - constrained edge done"); // TODO: remove t.MarkConstrainedEdge(ep, eq); ot.MarkConstrainedEdge(ep, eq); Legalize(tcx, t); Legalize(tcx, ot); } else { if (tcx.IsDebugEnabled) Console.WriteLine("[FLIP] - subedge done"); // TODO: remove // XXX: I think one of the triangles should be legalized here? } } else { if (tcx.IsDebugEnabled) Console.WriteLine("[FLIP] - flipping and continuing with triangle still crossing edge"); // TODO: remove Orientation o = TriangulationUtil.Orient2d(eq, op, ep); t = NextFlipTriangle(tcx, o, t, ot, p, op); FlipEdgeEvent(tcx, ep, eq, t, p); } } else { TriangulationPoint newP = NextFlipPoint(ep, eq, ot, op); FlipScanEdgeEvent(tcx, ep, eq, t, ot, newP); EdgeEvent(tcx, ep, eq, t, p); } }
/// <summary> /// When we need to traverse from one triangle to the next we need /// the point in current triangle that is the opposite point to the next /// triangle. /// </summary> private static TriangulationPoint NextFlipPoint(TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle ot, TriangulationPoint op) { Orientation o2d = TriangulationUtil.Orient2d(eq, op, ep); switch (o2d) { case Orientation.CW: return(ot.PointCCWFrom(op)); case Orientation.CCW: return(ot.PointCWFrom(op)); case Orientation.Collinear: // TODO: implement support for point on constraint edge throw new PointOnEdgeException("Point on constrained edge not supported yet", eq, op, ep); default: throw new NotImplementedException("Orientation not handled"); } }
/// <summary> /// After a flip we have two triangles and know that only one will still be /// intersecting the edge. So decide which to contiune with and legalize the other /// </summary> /// <param name="tcx"></param> /// <param name="o">should be the result of an TriangulationUtil.orient2d( eq, op, ep )</param> /// <param name="t">triangle 1</param> /// <param name="ot">triangle 2</param> /// <param name="p">a point shared by both triangles</param> /// <param name="op">another point shared by both triangles</param> /// <returns>returns the triangle still intersecting the edge</returns> private static DelaunayTriangle NextFlipTriangle(DTSweepContext tcx, Orientation o, DelaunayTriangle t, DelaunayTriangle ot, TriangulationPoint p, TriangulationPoint op) { int edgeIndex; if (o == Orientation.CCW) { // ot is not crossing edge after flip edgeIndex = ot.EdgeIndex(p, op); ot.EdgeIsDelaunay[edgeIndex] = true; Legalize(tcx, ot); ot.EdgeIsDelaunay.Clear(); return t; } // t is not crossing edge after flip edgeIndex = t.EdgeIndex(p, op); t.EdgeIsDelaunay[edgeIndex] = true; Legalize(tcx, t); t.EdgeIsDelaunay.Clear(); return ot; }
/// <summary> /// After a flip we have two triangles and know that only one will still be /// intersecting the edge. So decide which to contiune with and legalize the other /// </summary> /// <param name="tcx"></param> /// <param name="o">should be the result of an TriangulationUtil.orient2d( eq, op, ep )</param> /// <param name="t">triangle 1</param> /// <param name="ot">triangle 2</param> /// <param name="p">a point shared by both triangles</param> /// <param name="op">another point shared by both triangles</param> /// <returns>returns the triangle still intersecting the edge</returns> private static DelaunayTriangle NextFlipTriangle(DTSweepContext tcx, Orientation o, DelaunayTriangle t, DelaunayTriangle ot, TriangulationPoint p, TriangulationPoint op) { int edgeIndex; if (o == Orientation.CCW) { // ot is not crossing edge after flip edgeIndex = ot.EdgeIndex(p, op); ot.EdgeIsDelaunay[edgeIndex] = true; Legalize(tcx, ot); ot.EdgeIsDelaunay.Clear(); return(t); } // t is not crossing edge after flip edgeIndex = t.EdgeIndex(p, op); t.EdgeIsDelaunay[edgeIndex] = true; Legalize(tcx, t); t.EdgeIsDelaunay.Clear(); return(ot); }
/// <summary> /// Adds a triangle to the advancing front to fill a hole. /// </summary> /// <param name="tcx"></param> /// <param name="node">middle node, that is the bottom of the hole</param> private static void Fill(DTSweepContext tcx, AdvancingFrontNode node) { DelaunayTriangle triangle = new DelaunayTriangle(node.Prev.Point, node.Point, node.Next.Point); // TODO: should copy the cEdge value from neighbor triangles // for now cEdge values are copied during the legalize triangle.MarkNeighbor(node.Prev.Triangle); triangle.MarkNeighbor(node.Triangle); tcx.Triangles.Add(triangle); // Update the advancing front node.Prev.Next = node.Next; node.Next.Prev = node.Prev; tcx.RemoveNode(node); // If it was legalized the triangle has already been mapped if (!Legalize(tcx, triangle)) tcx.MapTriangleToNodes(triangle); }
/// <summary> /// Scan part of the FlipScan algorithm<br> /// When a triangle pair isn't flippable we will scan for the next /// point that is inside the flip triangle scan area. When found /// we generate a new flipEdgeEvent /// </summary> /// <param name="tcx"></param> /// <param name="ep">last point on the edge we are traversing</param> /// <param name="eq">first point on the edge we are traversing</param> /// <param name="flipTriangle">the current triangle sharing the point eq with edge</param> /// <param name="t"></param> /// <param name="p"></param> private static void FlipScanEdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle flipTriangle, DelaunayTriangle t, TriangulationPoint p) { DelaunayTriangle ot; TriangulationPoint op, newP; bool inScanArea; ot = t.NeighborAcrossFrom(p); op = ot.OppositePoint(t, p); if (ot == null) { // If we want to integrate the fillEdgeEvent do it here // With current implementation we should never get here throw new Exception("[BUG:FIXME] FLIP failed due to missing triangle"); } if (tcx.IsDebugEnabled) { Console.WriteLine("[FLIP:SCAN] - scan next point"); // TODO: remove tcx.DTDebugContext.PrimaryTriangle = t; tcx.DTDebugContext.SecondaryTriangle = ot; } inScanArea = TriangulationUtil.InScanArea(eq, flipTriangle.PointCCWFrom(eq), flipTriangle.PointCWFrom(eq), op); if (inScanArea) { // flip with new edge op->eq FlipEdgeEvent(tcx, eq, op, ot, op); // TODO: Actually I just figured out that it should be possible to // improve this by getting the next ot and op before the the above // flip and continue the flipScanEdgeEvent here // set new ot and op here and loop back to inScanArea test // also need to set a new flipTriangle first // Turns out at first glance that this is somewhat complicated // so it will have to wait. } else { newP = NextFlipPoint(ep, eq, ot, op); FlipScanEdgeEvent(tcx, ep, eq, flipTriangle, ot, newP); } }
/// <summary> /// Rotates a triangle pair one vertex CW /// n2 n2 /// P +-----+ P +-----+ /// | t /| |\ t | /// | / | | \ | /// n1| / |n3 n1| \ |n3 /// | / | after CW | \ | /// |/ oT | | oT \| /// +-----+ oP +-----+ /// n4 n4 /// </summary> private static void RotateTrianglePair(DelaunayTriangle t, TriangulationPoint p, DelaunayTriangle ot, TriangulationPoint op) { DelaunayTriangle n1, n2, n3, n4; n1 = t.NeighborCCWFrom(p); n2 = t.NeighborCWFrom(p); n3 = ot.NeighborCCWFrom(op); n4 = ot.NeighborCWFrom(op); bool ce1, ce2, ce3, ce4; ce1 = t.GetConstrainedEdgeCCW(p); ce2 = t.GetConstrainedEdgeCW(p); ce3 = ot.GetConstrainedEdgeCCW(op); ce4 = ot.GetConstrainedEdgeCW(op); bool de1, de2, de3, de4; de1 = t.GetDelaunayEdgeCCW(p); de2 = t.GetDelaunayEdgeCW(p); de3 = ot.GetDelaunayEdgeCCW(op); de4 = ot.GetDelaunayEdgeCW(op); t.Legalize(p, op); ot.Legalize(op, p); // Remap dEdge ot.SetDelaunayEdgeCCW(p, de1); t.SetDelaunayEdgeCW(p, de2); t.SetDelaunayEdgeCCW(op, de3); ot.SetDelaunayEdgeCW(op, de4); // Remap cEdge ot.SetConstrainedEdgeCCW(p, ce1); t.SetConstrainedEdgeCW(p, ce2); t.SetConstrainedEdgeCCW(op, ce3); ot.SetConstrainedEdgeCW(op, ce4); // Remap neighbors // XXX: might optimize the markNeighbor by keeping track of // what side should be assigned to what neighbor after the // rotation. Now mark neighbor does lots of testing to find // the right side. t.Neighbors.Clear(); ot.Neighbors.Clear(); if (n1 != null) ot.MarkNeighbor(n1); if (n2 != null) t.MarkNeighbor(n2); if (n3 != null) t.MarkNeighbor(n3); if (n4 != null) ot.MarkNeighbor(n4); t.MarkNeighbor(ot); }
public static bool Test(DelaunayTriangle triangle, Vec2 p) { return triangle.Contains(new TriangulationPoint(p.X, p.Y)); }