public virtual void TestRandomSampling() { Directory dir = NewDirectory(); Directory taxoDir = NewDirectory(); DirectoryTaxonomyWriter taxoWriter = new DirectoryTaxonomyWriter(taxoDir); RandomIndexWriter writer = new RandomIndexWriter( #if FEATURE_INSTANCE_TESTDATA_INITIALIZATION this, #endif Random, dir); FacetsConfig config = new FacetsConfig(); int numDocs = AtLeast(10000); for (int i = 0; i < numDocs; i++) { Document doc = new Document(); doc.Add(new StringField("EvenOdd", (i % 2 == 0) ? "even" : "odd", Store.NO)); doc.Add(new FacetField("iMod10", Convert.ToString(i % 10, CultureInfo.InvariantCulture))); writer.AddDocument(config.Build(taxoWriter, doc)); } Random random = Random; // NRT open IndexSearcher searcher = NewSearcher(writer.GetReader()); var taxoReader = new DirectoryTaxonomyReader(taxoWriter); IOUtils.Dispose(writer, taxoWriter); // Test empty results RandomSamplingFacetsCollector collectRandomZeroResults = new RandomSamplingFacetsCollector(numDocs / 10, random.NextInt64()); // There should be no divisions by zero searcher.Search(new TermQuery(new Term("EvenOdd", "NeverMatches")), collectRandomZeroResults); // There should be no divisions by zero and no null result Assert.IsNotNull(collectRandomZeroResults.GetMatchingDocs()); // There should be no results at all foreach (MatchingDocs doc in collectRandomZeroResults.GetMatchingDocs()) { Assert.AreEqual(0, doc.TotalHits); } // Now start searching and retrieve results. // Use a query to select half of the documents. TermQuery query = new TermQuery(new Term("EvenOdd", "even")); // there will be 5 facet values (0, 2, 4, 6 and 8), as only the even (i % // 10) are hits. // there is a REAL small chance that one of the 5 values will be missed when // sampling. // but is that 0.8 (chance not to take a value) ^ 2000 * 5 (any can be // missing) ~ 10^-193 // so that is probably not going to happen. int maxNumChildren = 5; RandomSamplingFacetsCollector random100Percent = new RandomSamplingFacetsCollector(numDocs, random.NextInt64()); // no sampling RandomSamplingFacetsCollector random10Percent = new RandomSamplingFacetsCollector(numDocs / 10, random.NextInt64()); // 10 % of total docs, 20% of the hits FacetsCollector fc = new FacetsCollector(); searcher.Search(query, MultiCollector.Wrap(fc, random100Percent, random10Percent)); FastTaxonomyFacetCounts random10FacetCounts = new FastTaxonomyFacetCounts(taxoReader, config, random10Percent); FastTaxonomyFacetCounts random100FacetCounts = new FastTaxonomyFacetCounts(taxoReader, config, random100Percent); FastTaxonomyFacetCounts exactFacetCounts = new FastTaxonomyFacetCounts(taxoReader, config, fc); FacetResult random10Result = random10Percent.AmortizeFacetCounts(random10FacetCounts.GetTopChildren(10, "iMod10"), config, searcher); FacetResult random100Result = random100FacetCounts.GetTopChildren(10, "iMod10"); FacetResult exactResult = exactFacetCounts.GetTopChildren(10, "iMod10"); Assert.AreEqual(random100Result, exactResult); // we should have five children, but there is a small chance we have less. // (see above). Assert.IsTrue(random10Result.ChildCount <= maxNumChildren); // there should be one child at least. Assert.IsTrue(random10Result.ChildCount >= 1); // now calculate some statistics to determine if the sampled result is 'ok'. // because random sampling is used, the results will vary each time. int sum = 0; foreach (LabelAndValue lav in random10Result.LabelValues) { sum += (int)lav.Value; } float mu = (float)sum / (float)maxNumChildren; float variance = 0; foreach (LabelAndValue lav in random10Result.LabelValues) { variance += (float)Math.Pow((mu - (int)lav.Value), 2); } variance = variance / maxNumChildren; float sigma = (float)Math.Sqrt(variance); // we query only half the documents and have 5 categories. The average // number of docs in a category will thus be the total divided by 5*2 float targetMu = numDocs / (5.0f * 2.0f); // the average should be in the range and the standard deviation should not // be too great Assert.IsTrue(sigma < 200); Assert.IsTrue(targetMu - 3 * sigma < mu && mu < targetMu + 3 * sigma); IOUtils.Dispose(searcher.IndexReader, taxoReader, dir, taxoDir); }
public virtual void TestRandomSampling() { Directory dir = NewDirectory(); Directory taxoDir = NewDirectory(); DirectoryTaxonomyWriter taxoWriter = new DirectoryTaxonomyWriter(taxoDir); RandomIndexWriter writer = new RandomIndexWriter(Random(), dir); FacetsConfig config = new FacetsConfig(); int numDocs = AtLeast(10000); for (int i = 0; i < numDocs; i++) { Document doc = new Document(); doc.Add(new StringField("EvenOdd", (i % 2 == 0) ? "even" : "odd", Store.NO)); doc.Add(new FacetField("iMod10", Convert.ToString(i % 10))); writer.AddDocument(config.Build(taxoWriter, doc)); } Random random = Random(); // NRT open IndexSearcher searcher = NewSearcher(writer.Reader); var taxoReader = new DirectoryTaxonomyReader(taxoWriter); IOUtils.Close(writer, taxoWriter); // Test empty results RandomSamplingFacetsCollector collectRandomZeroResults = new RandomSamplingFacetsCollector(numDocs / 10, random.NextLong()); // There should be no divisions by zero searcher.Search(new TermQuery(new Term("EvenOdd", "NeverMatches")), collectRandomZeroResults); // There should be no divisions by zero and no null result Assert.NotNull(collectRandomZeroResults.GetMatchingDocs); // There should be no results at all foreach (MatchingDocs doc in collectRandomZeroResults.GetMatchingDocs) { Assert.AreEqual(0, doc.totalHits); } // Now start searching and retrieve results. // Use a query to select half of the documents. TermQuery query = new TermQuery(new Term("EvenOdd", "even")); // there will be 5 facet values (0, 2, 4, 6 and 8), as only the even (i % // 10) are hits. // there is a REAL small chance that one of the 5 values will be missed when // sampling. // but is that 0.8 (chance not to take a value) ^ 2000 * 5 (any can be // missing) ~ 10^-193 // so that is probably not going to happen. int maxNumChildren = 5; RandomSamplingFacetsCollector random100Percent = new RandomSamplingFacetsCollector(numDocs, random.NextLong()); // no sampling RandomSamplingFacetsCollector random10Percent = new RandomSamplingFacetsCollector(numDocs / 10, random.NextLong()); // 10 % of total docs, 20% of the hits FacetsCollector fc = new FacetsCollector(); searcher.Search(query, MultiCollector.Wrap(fc, random100Percent, random10Percent)); FastTaxonomyFacetCounts random10FacetCounts = new FastTaxonomyFacetCounts(taxoReader, config, random10Percent); FastTaxonomyFacetCounts random100FacetCounts = new FastTaxonomyFacetCounts(taxoReader, config, random100Percent); FastTaxonomyFacetCounts exactFacetCounts = new FastTaxonomyFacetCounts(taxoReader, config, fc); FacetResult random10Result = random10Percent.AmortizeFacetCounts(random10FacetCounts.GetTopChildren(10, "iMod10"), config, searcher); FacetResult random100Result = random100FacetCounts.GetTopChildren(10, "iMod10"); FacetResult exactResult = exactFacetCounts.GetTopChildren(10, "iMod10"); Assert.AreEqual(random100Result, exactResult); // we should have five children, but there is a small chance we have less. // (see above). Assert.True(random10Result.ChildCount <= maxNumChildren); // there should be one child at least. Assert.True(random10Result.ChildCount >= 1); // now calculate some statistics to determine if the sampled result is 'ok'. // because random sampling is used, the results will vary each time. int sum = 0; foreach (LabelAndValue lav in random10Result.LabelValues) { sum += (int)lav.value; } float mu = (float)sum / (float)maxNumChildren; float variance = 0; foreach (LabelAndValue lav in random10Result.LabelValues) { variance += (float)Math.Pow((mu - (int)lav.value), 2); } variance = variance / maxNumChildren; float sigma = (float)Math.Sqrt(variance); // we query only half the documents and have 5 categories. The average // number of docs in a category will thus be the total divided by 5*2 float targetMu = numDocs / (5.0f * 2.0f); // the average should be in the range and the standard deviation should not // be too great Assert.True(sigma < 200); Assert.True(targetMu - 3 * sigma < mu && mu < targetMu + 3 * sigma); IOUtils.Close(searcher.IndexReader, taxoReader, dir, taxoDir); }