예제 #1
0
    public TerminationOperator()
      : base() {
      Parameters.Add(new LookupParameter<ITerminator>("Terminator", "The termination criteria which sould be checked."));
      Parameters.Add(new LookupParameter<BoolValue>("Terminate", "The parameter which will be set to determine if execution should be terminated or schould continue."));
      Parameters.Add(new OperatorParameter("ContinueBranch", "The operator which is executed if no termination criteria has met."));
      Parameters.Add(new OperatorParameter("TerminateBranch", "The operator which is executed if any termination criteria has met."));

      var assigner = new Assigner() { Name = "Terminate = false" };
      assigner.LeftSideParameter.ActualName = TerminateParameter.Name;
      assigner.RightSideParameter.Value = new BoolValue(false);

      var placeholder = new Placeholder() { Name = "Check termination criteria (Placeholder)" };
      placeholder.OperatorParameter.ActualName = TerminatorParameter.Name;

      BeforeExecutionOperators.Add(assigner);
      BeforeExecutionOperators.Add(placeholder);
    }
    public RealVectorParticleCreator()
      : base() {
      Parameters.Add(new LookupParameter<IntValue>("ProblemSize", "The dimension of the problem."));
      Parameters.Add(new ValueLookupParameter<DoubleMatrix>("Bounds", "The lower and upper bounds in each dimension."));
      Parameters.Add(new LookupParameter<RealVector>("RealVector", "Particle's current solution"));
      Parameters.Add(new LookupParameter<RealVector>("PersonalBest", "Particle's personal best solution."));
      Parameters.Add(new LookupParameter<RealVector>("Velocity", "Particle's current velocity."));

      UniformRandomRealVectorCreator realVectorCreater = new UniformRandomRealVectorCreator();
      Assigner personalBestPositionAssigner = new Assigner();

      OperatorGraph.InitialOperator = realVectorCreater;

      realVectorCreater.RealVectorParameter.ActualName = RealVectorParameter.Name;
      realVectorCreater.LengthParameter.ActualName = ProblemSizeParameter.Name;
      realVectorCreater.BoundsParameter.ActualName = BoundsParameter.Name;
      realVectorCreater.Successor = personalBestPositionAssigner;

      personalBestPositionAssigner.LeftSideParameter.ActualName = PersonalBestParameter.Name;
      personalBestPositionAssigner.RightSideParameter.ActualName = RealVectorParameter.Name;
      personalBestPositionAssigner.Successor = null;
    }
    public ParticleSwarmOptimization()
      : base() {
      Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
      Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
      Parameters.Add(new ValueParameter<IntValue>("SwarmSize", "Size of the particle swarm.", new IntValue(10)));
      Parameters.Add(new ValueParameter<IntValue>("MaxIterations", "Maximal number of iterations.", new IntValue(1000)));
      Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
      Parameters.Add(new ValueParameter<DoubleValue>("Inertia", "Inertia weight on a particle's movement (omega).", new DoubleValue(1)));
      Parameters.Add(new ValueParameter<DoubleValue>("PersonalBestAttraction", "Weight for particle's pull towards its personal best soution (phi_p).", new DoubleValue(-0.01)));
      Parameters.Add(new ValueParameter<DoubleValue>("NeighborBestAttraction", "Weight for pull towards the neighborhood best solution or global best solution in case of a totally connected topology (phi_g).", new DoubleValue(3.7)));
      Parameters.Add(new ConstrainedValueParameter<IParticleCreator>("ParticleCreator", "Operator that creates a new particle."));
      Parameters.Add(new ConstrainedValueParameter<IParticleUpdater>("ParticleUpdater", "Operator that updates a particle."));
      Parameters.Add(new OptionalConstrainedValueParameter<ITopologyInitializer>("TopologyInitializer", "Creates neighborhood description vectors."));
      Parameters.Add(new OptionalConstrainedValueParameter<ITopologyUpdater>("TopologyUpdater", "Updates the neighborhood description vectors."));
      Parameters.Add(new OptionalConstrainedValueParameter<IDiscreteDoubleValueModifier>("InertiaUpdater", "Updates the omega parameter."));
      Parameters.Add(new ConstrainedValueParameter<ISwarmUpdater>("SwarmUpdater", "Encoding-specific parameter which is provided by the problem. May provide additional encoding-specific parameters, such as velocity bounds for real valued problems"));
      ParticleUpdaterParameter.Hidden = true;

      RandomCreator randomCreator = new RandomCreator();
      VariableCreator variableCreator = new VariableCreator();
      Assigner currentInertiaAssigner = new Assigner();
      solutionsCreator = new SolutionsCreator();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      Placeholder topologyInitializerPlaceholder = new Placeholder();
      mainLoop = new ParticleSwarmOptimizationMainLoop();

      OperatorGraph.InitialOperator = randomCreator;

      randomCreator.SetSeedRandomlyParameter.Value = null;
      randomCreator.SeedParameter.Value = null;
      randomCreator.Successor = variableCreator;

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Iterations", new IntValue(0)));
      variableCreator.Successor = currentInertiaAssigner;

      currentInertiaAssigner.Name = "CurrentInertia := Inertia";
      currentInertiaAssigner.LeftSideParameter.ActualName = "CurrentInertia";
      currentInertiaAssigner.RightSideParameter.ActualName = "Inertia";
      currentInertiaAssigner.Successor = solutionsCreator;

      solutionsCreator.NumberOfSolutionsParameter.ActualName = "SwarmSize";
      ParameterizeSolutionsCreator();
      solutionsCreator.Successor = subScopesCounter;

      subScopesCounter.Name = "Initialize EvaluatedSolutions";
      subScopesCounter.ValueParameter.ActualName = "EvaluatedSolutions";
      subScopesCounter.Successor = topologyInitializerPlaceholder;

      topologyInitializerPlaceholder.Name = "(TopologyInitializer)";
      topologyInitializerPlaceholder.OperatorParameter.ActualName = "TopologyInitializer";
      topologyInitializerPlaceholder.Successor = mainLoop;

      mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
      mainLoop.InertiaParameter.ActualName = "CurrentInertia";
      mainLoop.MaxIterationsParameter.ActualName = MaxIterationsParameter.Name;
      mainLoop.NeighborBestAttractionParameter.ActualName = NeighborBestAttractionParameter.Name;
      mainLoop.InertiaUpdaterParameter.ActualName = InertiaUpdaterParameter.Name;
      mainLoop.ParticleUpdaterParameter.ActualName = ParticleUpdaterParameter.Name;
      mainLoop.PersonalBestAttractionParameter.ActualName = PersonalBestAttractionParameter.Name;
      mainLoop.RandomParameter.ActualName = randomCreator.RandomParameter.ActualName;
      mainLoop.SwarmSizeParameter.ActualName = SwarmSizeParameter.Name;
      mainLoop.TopologyUpdaterParameter.ActualName = TopologyUpdaterParameter.Name;
      mainLoop.RandomParameter.ActualName = randomCreator.RandomParameter.ActualName;
      mainLoop.ResultsParameter.ActualName = "Results";

      InitializeAnalyzers();
      InitializeParticleCreator();
      InitializeSwarmUpdater();
      ParameterizeSolutionsCreator();
      UpdateAnalyzers();
      UpdateInertiaUpdater();
      InitInertiaUpdater();
      UpdateTopologyInitializer();
      Initialize();
      ParameterizeMainLoop();
    }
    public AlpsGeneticAlgorithm()
      : base() {
      #region Add parameters
      Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
      Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));

      Parameters.Add(new FixedValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze all individuals from all layers combined.", new MultiAnalyzer()));
      Parameters.Add(new FixedValueParameter<MultiAnalyzer>("LayerAnalyzer", "The operator used to analyze each layer.", new MultiAnalyzer()));

      Parameters.Add(new ValueParameter<IntValue>("NumberOfLayers", "The number of layers.", new IntValue(10)));
      Parameters.Add(new ValueParameter<IntValue>("PopulationSize", "The size of the population of solutions in each layer.", new IntValue(100)));

      Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new OptionalConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
      Parameters.Add(new ValueParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1)));
      Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false)) { Hidden = true });
      Parameters.Add(new ValueParameter<BoolValue>("PlusSelection", "Include the parents in the selection of the invividuals for the next generation.", new BoolValue(false)));

      Parameters.Add(new ValueParameter<EnumValue<AgingScheme>>("AgingScheme", "The aging scheme for setting the age-limits for the layers.", new EnumValue<AgingScheme>(ALPS.AgingScheme.Polynomial)));
      Parameters.Add(new ValueParameter<IntValue>("AgeGap", "The frequency of reseeding the lowest layer and scaling factor for the age-limits for the layers.", new IntValue(20)));
      Parameters.Add(new ValueParameter<DoubleValue>("AgeInheritance", "A weight that determines the age of a child after crossover based on the older (1.0) and younger (0.0) parent.", new DoubleValue(1.0)) { Hidden = true });
      Parameters.Add(new ValueParameter<IntArray>("AgeLimits", "The maximum age an individual is allowed to reach in a certain layer.", new IntArray(new int[0])) { Hidden = true });

      Parameters.Add(new ValueParameter<IntValue>("MatingPoolRange", "The range of layers used for creating a mating pool. (1 = current + previous layer)", new IntValue(1)) { Hidden = true });
      Parameters.Add(new ValueParameter<BoolValue>("ReduceToPopulationSize", "Reduce the CurrentPopulationSize after elder migration to PopulationSize", new BoolValue(true)) { Hidden = true });

      Parameters.Add(new ValueParameter<MultiTerminator>("Terminator", "The termination criteria that defines if the algorithm should continue or stop.", new MultiTerminator()));
      #endregion

      #region Create operators
      var globalRandomCreator = new RandomCreator();
      var layer0Creator = new SubScopesCreator() { Name = "Create Layer Zero" };
      var layer0Processor = new SubScopesProcessor();
      var localRandomCreator = new LocalRandomCreator();
      var layerSolutionsCreator = new SolutionsCreator();
      var initializeAgeProcessor = new UniformSubScopesProcessor();
      var initializeAge = new VariableCreator() { Name = "Initialize Age" };
      var initializeCurrentPopulationSize = new SubScopesCounter() { Name = "Initialize CurrentPopulationCounter" };
      var initializeLocalEvaluatedSolutions = new Assigner() { Name = "Initialize LayerEvaluatedSolutions" };
      var initializeGlobalEvaluatedSolutions = new DataReducer() { Name = "Initialize EvaluatedSolutions" };
      var resultsCollector = new ResultsCollector();
      var mainLoop = new AlpsGeneticAlgorithmMainLoop();
      #endregion

      #region Create and parameterize operator graph
      OperatorGraph.InitialOperator = globalRandomCreator;

      globalRandomCreator.RandomParameter.ActualName = "GlobalRandom";
      globalRandomCreator.SeedParameter.Value = null;
      globalRandomCreator.SeedParameter.ActualName = SeedParameter.Name;
      globalRandomCreator.SetSeedRandomlyParameter.Value = null;
      globalRandomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
      globalRandomCreator.Successor = layer0Creator;

      layer0Creator.NumberOfSubScopesParameter.Value = new IntValue(1);
      layer0Creator.Successor = layer0Processor;

      layer0Processor.Operators.Add(localRandomCreator);
      layer0Processor.Successor = initializeGlobalEvaluatedSolutions;

      localRandomCreator.Successor = layerSolutionsCreator;

      layerSolutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
      layerSolutionsCreator.Successor = initializeAgeProcessor;

      initializeAgeProcessor.Operator = initializeAge;
      initializeAgeProcessor.Successor = initializeCurrentPopulationSize;

      initializeCurrentPopulationSize.ValueParameter.ActualName = "CurrentPopulationSize";
      initializeCurrentPopulationSize.Successor = initializeLocalEvaluatedSolutions;

      initializeAge.CollectedValues.Add(new ValueParameter<DoubleValue>("Age", new DoubleValue(0)));
      initializeAge.Successor = null;

      initializeLocalEvaluatedSolutions.LeftSideParameter.ActualName = "LayerEvaluatedSolutions";
      initializeLocalEvaluatedSolutions.RightSideParameter.ActualName = "CurrentPopulationSize";
      initializeLocalEvaluatedSolutions.Successor = null;

      initializeGlobalEvaluatedSolutions.ReductionOperation.Value.Value = ReductionOperations.Sum;
      initializeGlobalEvaluatedSolutions.TargetOperation.Value.Value = ReductionOperations.Assign;
      initializeGlobalEvaluatedSolutions.ParameterToReduce.ActualName = "LayerEvaluatedSolutions";
      initializeGlobalEvaluatedSolutions.TargetParameter.ActualName = "EvaluatedSolutions";
      initializeGlobalEvaluatedSolutions.Successor = resultsCollector;

      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Evaluated Solutions", null, "EvaluatedSolutions"));
      resultsCollector.Successor = mainLoop;

      mainLoop.GlobalRandomParameter.ActualName = "GlobalRandom";
      mainLoop.LocalRandomParameter.ActualName = localRandomCreator.LocalRandomParameter.Name;
      mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions";
      mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
      mainLoop.LayerAnalyzerParameter.ActualName = LayerAnalyzerParameter.Name;
      mainLoop.NumberOfLayersParameter.ActualName = NumberOfLayersParameter.Name;
      mainLoop.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
      mainLoop.CurrentPopulationSizeParameter.ActualName = "CurrentPopulationSize";
      mainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
      mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
      mainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
      mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      mainLoop.ElitesParameter.ActualName = ElitesParameter.Name;
      mainLoop.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
      mainLoop.PlusSelectionParameter.ActualName = PlusSelectionParameter.Name;
      mainLoop.AgeParameter.ActualName = "Age";
      mainLoop.AgeGapParameter.ActualName = AgeGapParameter.Name;
      mainLoop.AgeInheritanceParameter.ActualName = AgeInheritanceParameter.Name;
      mainLoop.AgeLimitsParameter.ActualName = AgeLimitsParameter.Name;
      mainLoop.MatingPoolRangeParameter.ActualName = MatingPoolRangeParameter.Name;
      mainLoop.ReduceToPopulationSizeParameter.ActualName = ReduceToPopulationSizeParameter.Name;
      mainLoop.TerminatorParameter.ActualName = TerminatorParameter.Name;
      #endregion

      #region Set selectors
      foreach (var selector in ApplicationManager.Manager.GetInstances<ISelector>().Where(s => !(s is IMultiObjectiveSelector)).OrderBy(s => Name))
        SelectorParameter.ValidValues.Add(selector);
      var defaultSelector = SelectorParameter.ValidValues.OfType<GeneralizedRankSelector>().FirstOrDefault();
      if (defaultSelector != null) {
        defaultSelector.PressureParameter.Value = new DoubleValue(4.0);
        SelectorParameter.Value = defaultSelector;
      }
      #endregion

      #region Create analyzers
      qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
      layerQualityAnalyzer = new BestAverageWorstQualityAnalyzer();
      ageAnalyzer = new OldestAverageYoungestAgeAnalyzer();
      layerAgeAnalyzer = new OldestAverageYoungestAgeAnalyzer();
      ageDistributionAnalyzer = new AgeDistributionAnalyzer();
      layerAgeDistributionAnalyzer = new AgeDistributionAnalyzer();
      #endregion

      #region Create terminators
      generationsTerminator = new ComparisonTerminator<IntValue>("Generations", ComparisonType.Less, new IntValue(1000)) { Name = "Generations" };
      evaluationsTerminator = new ComparisonTerminator<IntValue>("EvaluatedSolutions", ComparisonType.Less, new IntValue(int.MaxValue)) { Name = "Evaluations" };
      qualityTerminator = new SingleObjectiveQualityTerminator() { Name = "Quality" };
      executionTimeTerminator = new ExecutionTimeTerminator(this, new TimeSpanValue(TimeSpan.FromMinutes(5)));
      #endregion

      #region Parameterize
      UpdateAnalyzers();
      ParameterizeAnalyzers();

      ParameterizeSelectors();

      UpdateTerminators();

      ParameterizeAgeLimits();
      #endregion

      Initialize();
    }
    private CombinedOperator CreateLayerOpener() {
      var layerOpener = new CombinedOperator() { Name = "Open new Layer if needed" };
      var maxLayerReached = new Comparator() { Name = "MaxLayersReached = OpenLayers >= NumberOfLayers" };
      var maxLayerReachedBranch = new ConditionalBranch() { Name = "MaxLayersReached?" };
      var openNewLayerCalculator = new ExpressionCalculator() { Name = "OpenNewLayer = Generations >= AgeLimits[OpenLayers - 1]" };
      var openNewLayerBranch = new ConditionalBranch() { Name = "OpenNewLayer?" };
      var layerCreator = new LastLayerCloner() { Name = "Create Layer" };
      var updateLayerNumber = new Assigner() { Name = "Layer = OpenLayers" };
      var historyWiper = new ResultsHistoryWiper() { Name = "Clear History in Results" };
      var createChildrenViaCrossover = new AlpsOffspringSelectionGeneticAlgorithmMainOperator();
      var incrEvaluatedSolutionsForNewLayer = new SubScopesCounter() { Name = "Update EvaluatedSolutions" };
      var incrOpenLayers = new IntCounter() { Name = "Incr. OpenLayers" };
      var newLayerResultsCollector = new ResultsCollector() { Name = "Collect new Layer Results" };

      layerOpener.OperatorGraph.InitialOperator = maxLayerReached;

      maxLayerReached.LeftSideParameter.ActualName = "OpenLayers";
      maxLayerReached.RightSideParameter.ActualName = NumberOfLayersParameter.Name;
      maxLayerReached.ResultParameter.ActualName = "MaxLayerReached";
      maxLayerReached.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maxLayerReached.Successor = maxLayerReachedBranch;

      maxLayerReachedBranch.ConditionParameter.ActualName = "MaxLayerReached";
      maxLayerReachedBranch.FalseBranch = openNewLayerCalculator;

      openNewLayerCalculator.CollectedValues.Add(new LookupParameter<IntArray>(AgeLimitsParameter.Name));
      openNewLayerCalculator.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      openNewLayerCalculator.CollectedValues.Add(new LookupParameter<IntValue>(NumberOfLayersParameter.Name));
      openNewLayerCalculator.CollectedValues.Add(new LookupParameter<IntValue>("OpenLayers"));
      openNewLayerCalculator.ExpressionResultParameter.ActualName = "OpenNewLayer";
      openNewLayerCalculator.ExpressionParameter.Value = new StringValue("Generations 1 + AgeLimits OpenLayers 1 - [] >");
      openNewLayerCalculator.Successor = openNewLayerBranch;

      openNewLayerBranch.ConditionParameter.ActualName = "OpenNewLayer";
      openNewLayerBranch.TrueBranch = layerCreator;

      layerCreator.NewLayerOperator = updateLayerNumber;
      layerCreator.Successor = incrOpenLayers;

      updateLayerNumber.LeftSideParameter.ActualName = "Layer";
      updateLayerNumber.RightSideParameter.ActualName = "OpenLayers";
      updateLayerNumber.Successor = historyWiper;

      historyWiper.ResultsParameter.ActualName = "LayerResults";
      historyWiper.Successor = createChildrenViaCrossover;

      // Maybe use only crossover and no elitism instead of "default operator"
      createChildrenViaCrossover.RandomParameter.ActualName = LocalRandomParameter.Name;
      createChildrenViaCrossover.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
      createChildrenViaCrossover.EvaluatedSolutionsParameter.ActualName = "LayerEvaluatedSolutions";
      createChildrenViaCrossover.QualityParameter.ActualName = QualityParameter.Name;
      createChildrenViaCrossover.MaximizationParameter.ActualName = MaximizationParameter.Name;
      createChildrenViaCrossover.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
      createChildrenViaCrossover.SelectorParameter.ActualName = SelectorParameter.Name;
      createChildrenViaCrossover.CrossoverParameter.ActualName = CrossoverParameter.Name;
      createChildrenViaCrossover.MutatorParameter.ActualName = MutatorParameter.ActualName;
      createChildrenViaCrossover.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      createChildrenViaCrossover.ElitesParameter.ActualName = ElitesParameter.Name;
      createChildrenViaCrossover.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
      createChildrenViaCrossover.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      createChildrenViaCrossover.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
      createChildrenViaCrossover.CurrentSuccessRatioParameter.ActualName = "CurrentSuccessRatio";
      createChildrenViaCrossover.SelectionPressureParameter.ActualName = "SelectionPressure";
      createChildrenViaCrossover.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
      createChildrenViaCrossover.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
      createChildrenViaCrossover.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;
      createChildrenViaCrossover.AgeParameter.ActualName = AgeParameter.Name;
      createChildrenViaCrossover.AgeInheritanceParameter.ActualName = AgeInheritanceParameter.Name;
      createChildrenViaCrossover.AgeIncrementParameter.Value = new DoubleValue(0.0);
      createChildrenViaCrossover.Successor = incrEvaluatedSolutionsForNewLayer;

      incrEvaluatedSolutionsForNewLayer.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
      incrEvaluatedSolutionsForNewLayer.AccumulateParameter.Value = new BoolValue(true);

      incrOpenLayers.ValueParameter.ActualName = "OpenLayers";
      incrOpenLayers.Increment = new IntValue(1);
      incrOpenLayers.Successor = newLayerResultsCollector;

      newLayerResultsCollector.CollectedValues.Add(new ScopeTreeLookupParameter<ResultCollection>("LayerResults", "Result set for each layer", "LayerResults"));
      newLayerResultsCollector.CopyValue = new BoolValue(false);
      newLayerResultsCollector.Successor = null;

      return layerOpener;
    }
    public AlpsOffspringSelectionGeneticAlgorithmMainLoop()
      : base() {
      Parameters.Add(new ValueLookupParameter<IRandom>("GlobalRandom", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<IRandom>("LocalRandom", "A pseudo random number generator."));

      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));

      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze all individuals from all layers combined."));
      Parameters.Add(new ValueLookupParameter<IOperator>("LayerAnalyzer", "The operator used to analyze each layer."));

      Parameters.Add(new ValueLookupParameter<IntValue>("NumberOfLayers", "The number of layers."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population of solutions in each layer."));
      Parameters.Add(new LookupParameter<IntValue>("CurrentPopulationSize", "The current size of the population."));

      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));

      Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded."));

      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Age", "The age of individuals."));
      Parameters.Add(new ValueLookupParameter<IntValue>("AgeGap", "The frequency of reseeding the lowest layer and scaling factor for the age-limits for the layers."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("AgeInheritance", "A weight that determines the age of a child after crossover based on the older (1.0) and younger (0.0) parent."));
      Parameters.Add(new ValueLookupParameter<IntArray>("AgeLimits", "The maximum age an individual is allowed to reach in a certain layer."));

      Parameters.Add(new ValueLookupParameter<IntValue>("MatingPoolRange", "The range of sub - populations used for creating a mating pool. (1 = current + previous sub-population)"));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReduceToPopulationSize", "Reduce the CurrentPopulationSize after elder migration to PopulationSize"));

      Parameters.Add(new ValueLookupParameter<IOperator>("Terminator", "The termination criteria that defines if the algorithm should continue or stop"));


      var variableCreator = new VariableCreator() { Name = "Initialize" };
      var initLayerAnalyzerProcessor = new SubScopesProcessor();
      var layerVariableCreator = new VariableCreator() { Name = "Initialize Layer" };
      var initLayerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" };
      var layerResultCollector = new ResultsCollector() { Name = "Collect layer results" };
      var initAnalyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" };
      var resultsCollector = new ResultsCollector();
      var matingPoolCreator = new MatingPoolCreator() { Name = "Create Mating Pools" };
      var matingPoolProcessor = new UniformSubScopesProcessor() { Name = "Process Mating Pools" };
      var initializeLayer = new Assigner() { Name = "Reset LayerEvaluatedSolutions" };
      var mainOperator = new AlpsOffspringSelectionGeneticAlgorithmMainOperator();
      var generationsIcrementor = new IntCounter() { Name = "Increment Generations" };
      var evaluatedSolutionsReducer = new DataReducer() { Name = "Increment EvaluatedSolutions" };
      var eldersEmigrator = CreateEldersEmigrator();
      var layerOpener = CreateLayerOpener();
      var layerReseeder = CreateReseeder();
      var layerAnalyzerProcessor = new UniformSubScopesProcessor();
      var layerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" };
      var analyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" };
      var termination = new TerminationOperator();

      OperatorGraph.InitialOperator = variableCreator;

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("OpenLayers", new IntValue(1)));
      variableCreator.Successor = initLayerAnalyzerProcessor;

      initLayerAnalyzerProcessor.Operators.Add(layerVariableCreator);
      initLayerAnalyzerProcessor.Successor = initAnalyzerPlaceholder;

      layerVariableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Layer", new IntValue(0)));
      layerVariableCreator.CollectedValues.Add(new ValueParameter<ResultCollection>("LayerResults"));
      layerVariableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("SelectionPressure", new DoubleValue(0)));
      layerVariableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("CurrentSuccessRatio", new DoubleValue(0)));
      layerVariableCreator.Successor = initLayerAnalyzerPlaceholder;

      initLayerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name;
      initLayerAnalyzerPlaceholder.Successor = layerResultCollector;

      layerResultCollector.ResultsParameter.ActualName = "LayerResults";
      layerResultCollector.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure"));
      layerResultCollector.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio"));
      layerResultCollector.Successor = null;

      initAnalyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name;
      initAnalyzerPlaceholder.Successor = resultsCollector;

      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector.CollectedValues.Add(new ScopeTreeLookupParameter<ResultCollection>("LayerResults", "Result set for each Layer", "LayerResults"));
      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("OpenLayers"));
      resultsCollector.CopyValue = new BoolValue(false);
      resultsCollector.Successor = matingPoolCreator;

      matingPoolCreator.MatingPoolRangeParameter.Value = null;
      matingPoolCreator.MatingPoolRangeParameter.ActualName = MatingPoolRangeParameter.Name;
      matingPoolCreator.Successor = matingPoolProcessor;

      matingPoolProcessor.Parallel.Value = true;
      matingPoolProcessor.Operator = initializeLayer;
      matingPoolProcessor.Successor = generationsIcrementor;

      initializeLayer.LeftSideParameter.ActualName = "LayerEvaluatedSolutions";
      initializeLayer.RightSideParameter.Value = new IntValue(0);
      initializeLayer.Successor = mainOperator;

      mainOperator.RandomParameter.ActualName = LocalRandomParameter.Name;
      mainOperator.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
      mainOperator.EvaluatedSolutionsParameter.ActualName = "LayerEvaluatedSolutions";
      mainOperator.QualityParameter.ActualName = QualityParameter.Name;
      mainOperator.MaximizationParameter.ActualName = MaximizationParameter.Name;
      mainOperator.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
      mainOperator.SelectorParameter.ActualName = SelectorParameter.Name;
      mainOperator.CrossoverParameter.ActualName = CrossoverParameter.Name;
      mainOperator.MutatorParameter.ActualName = MutatorParameter.ActualName;
      mainOperator.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      mainOperator.ElitesParameter.ActualName = ElitesParameter.Name;
      mainOperator.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
      mainOperator.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      mainOperator.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
      mainOperator.CurrentSuccessRatioParameter.ActualName = "CurrentSuccessRatio";
      mainOperator.SelectionPressureParameter.ActualName = "SelectionPressure";
      mainOperator.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
      mainOperator.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
      mainOperator.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;
      mainOperator.AgeParameter.ActualName = AgeParameter.Name;
      mainOperator.AgeInheritanceParameter.ActualName = AgeInheritanceParameter.Name;
      mainOperator.AgeIncrementParameter.Value = new DoubleValue(1.0);
      mainOperator.Successor = null;

      generationsIcrementor.ValueParameter.ActualName = "Generations";
      generationsIcrementor.Increment = new IntValue(1);
      generationsIcrementor.Successor = evaluatedSolutionsReducer;

      evaluatedSolutionsReducer.ParameterToReduce.ActualName = "LayerEvaluatedSolutions";
      evaluatedSolutionsReducer.TargetParameter.ActualName = EvaluatedSolutionsParameter.Name;
      evaluatedSolutionsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum);
      evaluatedSolutionsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum);
      evaluatedSolutionsReducer.Successor = eldersEmigrator;

      eldersEmigrator.Successor = layerOpener;

      layerOpener.Successor = layerReseeder;

      layerReseeder.Successor = layerAnalyzerProcessor;

      layerAnalyzerProcessor.Operator = layerAnalyzerPlaceholder;
      layerAnalyzerProcessor.Successor = analyzerPlaceholder;

      layerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name;

      analyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name;
      analyzerPlaceholder.Successor = termination;

      termination.TerminatorParameter.ActualName = TerminatorParameter.Name;
      termination.ContinueBranch = matingPoolCreator;
    }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new LookupParameter<DoubleValue>("BestLocalQuality", "The value which represents the best quality found so far."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The problem's best known quality value found so far."));
      Parameters.Add(new LookupParameter<DoubleValue>("MoveQuality", "The value which represents the quality of a move."));
      Parameters.Add(new LookupParameter<IntValue>("Iterations", "The number of iterations performed."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));

      Parameters.Add(new ValueLookupParameter<IOperator>("MoveGenerator", "The operator that generates the moves."));
      Parameters.Add(new ValueLookupParameter<IOperator>("MoveMaker", "The operator that performs a move and updates the quality."));
      Parameters.Add(new ValueLookupParameter<IOperator>("MoveEvaluator", "The operator that evaluates a move."));

      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze the solution and moves."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedMoves", "The number of evaluated moves."));
      #endregion

      #region Create operators
      SubScopesProcessor subScopesProcessor0 = new SubScopesProcessor();
      Assigner bestQualityInitializer = new Assigner();
      Placeholder analyzer1 = new Placeholder();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      SubScopesProcessor mainProcessor = new SubScopesProcessor();
      Placeholder moveGenerator = new Placeholder();
      UniformSubScopesProcessor moveEvaluationProcessor = new UniformSubScopesProcessor();
      Placeholder moveEvaluator = new Placeholder();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      BestSelector bestSelector = new BestSelector();
      SubScopesProcessor moveMakingProcessor = new SubScopesProcessor();
      UniformSubScopesProcessor selectedMoveMakingProcessor = new UniformSubScopesProcessor();
      QualityComparator qualityComparator = new QualityComparator();
      ConditionalBranch improvesQualityBranch = new ConditionalBranch();
      Placeholder moveMaker = new Placeholder();
      Assigner bestQualityUpdater = new Assigner();
      ResultsCollector resultsCollector2 = new ResultsCollector();
      MergingReducer mergingReducer = new MergingReducer();
      Placeholder analyzer2 = new Placeholder();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      IntCounter iterationsCounter = new IntCounter();
      Comparator iterationsComparator = new Comparator();
      ConditionalBranch iterationsTermination = new ConditionalBranch();

      bestQualityInitializer.Name = "Initialize BestQuality";
      bestQualityInitializer.LeftSideParameter.ActualName = BestLocalQualityParameter.Name;
      bestQualityInitializer.RightSideParameter.ActualName = QualityParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      resultsCollector1.CopyValue = new BoolValue(false);
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>(IterationsParameter.Name));
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>(BestLocalQualityParameter.Name, null, BestLocalQualityParameter.Name));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      moveGenerator.Name = "MoveGenerator (placeholder)";
      moveGenerator.OperatorParameter.ActualName = MoveGeneratorParameter.Name;

      moveEvaluationProcessor.Parallel = new BoolValue(true);

      moveEvaluator.Name = "MoveEvaluator (placeholder)";
      moveEvaluator.OperatorParameter.ActualName = MoveEvaluatorParameter.Name;

      subScopesCounter.Name = "Increment EvaluatedMoves";
      subScopesCounter.ValueParameter.ActualName = EvaluatedMovesParameter.Name;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.Value = new IntValue(1);
      bestSelector.QualityParameter.ActualName = MoveQualityParameter.Name;

      qualityComparator.LeftSideParameter.ActualName = MoveQualityParameter.Name;
      qualityComparator.RightSideParameter.ActualName = QualityParameter.Name;
      qualityComparator.ResultParameter.ActualName = "IsBetter";

      improvesQualityBranch.ConditionParameter.ActualName = "IsBetter";

      moveMaker.Name = "MoveMaker (placeholder)";
      moveMaker.OperatorParameter.ActualName = MoveMakerParameter.Name;

      bestQualityUpdater.Name = "Update BestQuality";
      bestQualityUpdater.LeftSideParameter.ActualName = BestLocalQualityParameter.Name;
      bestQualityUpdater.RightSideParameter.ActualName = QualityParameter.Name;

      resultsCollector2.CopyValue = new BoolValue(false);
      resultsCollector2.CollectedValues.Add(new LookupParameter<DoubleValue>(BestLocalQualityParameter.Name, null, BestLocalQualityParameter.Name));
      resultsCollector2.ResultsParameter.ActualName = ResultsParameter.Name;

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      subScopesRemover.RemoveAllSubScopes = true;

      iterationsCounter.Name = "Iterations Counter";
      iterationsCounter.Increment = new IntValue(1);
      iterationsCounter.ValueParameter.ActualName = IterationsParameter.Name;

      iterationsComparator.Name = "Iterations >= MaximumIterations";
      iterationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      iterationsComparator.LeftSideParameter.ActualName = IterationsParameter.Name;
      iterationsComparator.RightSideParameter.ActualName = MaximumIterationsParameter.Name;
      iterationsComparator.ResultParameter.ActualName = "Terminate";

      iterationsTermination.Name = "Iterations Termination Condition";
      iterationsTermination.ConditionParameter.ActualName = "Terminate";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = subScopesProcessor0; // don't change this without adapting the constructor of LocalSearchImprovementOperator
      subScopesProcessor0.Operators.Add(bestQualityInitializer);
      subScopesProcessor0.Successor = resultsCollector1;
      bestQualityInitializer.Successor = analyzer1;
      analyzer1.Successor = null;
      resultsCollector1.Successor = mainProcessor;
      mainProcessor.Operators.Add(moveGenerator);
      mainProcessor.Successor = iterationsCounter;
      moveGenerator.Successor = moveEvaluationProcessor;
      moveEvaluationProcessor.Operator = moveEvaluator;
      moveEvaluationProcessor.Successor = subScopesCounter;
      moveEvaluator.Successor = null;
      subScopesCounter.Successor = bestSelector;
      bestSelector.Successor = moveMakingProcessor;
      moveMakingProcessor.Operators.Add(new EmptyOperator());
      moveMakingProcessor.Operators.Add(selectedMoveMakingProcessor);
      moveMakingProcessor.Successor = mergingReducer;
      selectedMoveMakingProcessor.Operator = qualityComparator;
      qualityComparator.Successor = improvesQualityBranch;
      improvesQualityBranch.TrueBranch = moveMaker;
      improvesQualityBranch.FalseBranch = null;
      improvesQualityBranch.Successor = null;
      moveMaker.Successor = bestQualityUpdater;
      bestQualityUpdater.Successor = null;
      mergingReducer.Successor = analyzer2;
      analyzer2.Successor = subScopesRemover;
      subScopesRemover.Successor = null;
      iterationsCounter.Successor = iterationsComparator;
      iterationsComparator.Successor = iterationsTermination;
      iterationsTermination.TrueBranch = null;
      iterationsTermination.FalseBranch = mainProcessor;
      #endregion
    }
예제 #8
0
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
      Parameters.Add(new ValueLookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MinimumPopulationSize", "The minimum size of the population of solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumPopulationSize", "The maximum size of the population of solutions."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Effort", "The maximum number of offspring created in each generation."));
      Parameters.Add(new ValueLookupParameter<IntValue>("BatchSize", "The number of children that should be created during one iteration of the offspring creation process."));
      Parameters.Add(new ValueLookupParameter<ISolutionSimilarityCalculator>("SimilarityCalculator", "The operator used to calculate the similarity between two solutions."));
      Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the genetic algorithm should be applied."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      Assigner assigner1 = new Assigner();
      ResultsCollector resultsCollector = new ResultsCollector();
      Placeholder analyzer1 = new Placeholder();
      Placeholder selector = new Placeholder();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor = new UniformSubScopesProcessor();
      Placeholder crossover = new Placeholder();
      StochasticBranch stochasticBranch = new StochasticBranch();
      Placeholder mutator = new Placeholder();
      Placeholder evaluator = new Placeholder();
      WeightedParentsQualityComparator weightedParentsQualityComparator = new WeightedParentsQualityComparator();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      IntCounter intCounter1 = new IntCounter();
      IntCounter intCounter2 = new IntCounter();
      ConditionalSelector conditionalSelector = new ConditionalSelector();
      RightReducer rightReducer1 = new RightReducer();
      DuplicatesSelector duplicateSelector = new DuplicatesSelector();
      LeftReducer leftReducer1 = new LeftReducer();
      ProgressiveOffspringPreserver progressiveOffspringSelector = new ProgressiveOffspringPreserver();
      SubScopesCounter subScopesCounter2 = new SubScopesCounter();
      ExpressionCalculator calculator1 = new ExpressionCalculator();
      ConditionalBranch conditionalBranch1 = new ConditionalBranch();
      Comparator comparator1 = new Comparator();
      ConditionalBranch conditionalBranch2 = new ConditionalBranch();
      LeftReducer leftReducer2 = new LeftReducer();
      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
      BestSelector bestSelector = new BestSelector();
      RightReducer rightReducer2 = new RightReducer();
      ScopeCleaner scopeCleaner = new ScopeCleaner();
      ScopeRestorer scopeRestorer = new ScopeRestorer();
      MergingReducer mergingReducer = new MergingReducer();
      IntCounter intCounter3 = new IntCounter();
      SubScopesCounter subScopesCounter3 = new SubScopesCounter();
      ExpressionCalculator calculator2 = new ExpressionCalculator();
      Comparator comparator2 = new Comparator();
      ConditionalBranch conditionalBranch3 = new ConditionalBranch();
      Placeholder analyzer2 = new Placeholder();
      Comparator comparator3 = new Comparator();
      ConditionalBranch conditionalBranch4 = new ConditionalBranch();
      Comparator comparator4 = new Comparator();
      ConditionalBranch conditionalBranch5 = new ConditionalBranch();
      Assigner assigner3 = new Assigner();
      Assigner assigner4 = new Assigner();
      Assigner assigner5 = new Assigner();
      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Placeholder evaluator2 = new Placeholder();
      SubScopesCounter subScopesCounter4 = new SubScopesCounter();

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class RAPGA expects this to be called Generations
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("CurrentPopulationSize", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("NumberOfCreatedOffspring", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("NumberOfSuccessfulOffspring", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<ScopeList>("OffspringList", new ScopeList()));

      assigner1.Name = "Initialize CurrentPopulationSize";
      assigner1.LeftSideParameter.ActualName = "CurrentPopulationSize";
      assigner1.RightSideParameter.ActualName = PopulationSizeParameter.Name;

      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("CurrentPopulationSize"));
      resultsCollector.ResultsParameter.ActualName = "Results";

      analyzer1.Name = "Analyzer";
      analyzer1.OperatorParameter.ActualName = "Analyzer";

      selector.Name = "Selector";
      selector.OperatorParameter.ActualName = "Selector";

      childrenCreator.ParentsPerChild = new IntValue(2);

      uniformSubScopesProcessor.Parallel.Value = true;

      crossover.Name = "Crossover";
      crossover.OperatorParameter.ActualName = "Crossover";

      stochasticBranch.ProbabilityParameter.ActualName = "MutationProbability";
      stochasticBranch.RandomParameter.ActualName = "Random";

      mutator.Name = "Mutator";
      mutator.OperatorParameter.ActualName = "Mutator";

      evaluator.Name = "Evaluator";
      evaluator.OperatorParameter.ActualName = "Evaluator";

      weightedParentsQualityComparator.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      weightedParentsQualityComparator.LeftSideParameter.ActualName = QualityParameter.Name;
      weightedParentsQualityComparator.MaximizationParameter.ActualName = MaximizationParameter.Name;
      weightedParentsQualityComparator.RightSideParameter.ActualName = QualityParameter.Name;
      weightedParentsQualityComparator.ResultParameter.ActualName = "SuccessfulOffspring";

      subScopesRemover.RemoveAllSubScopes = true;

      intCounter1.Name = "Increment NumberOfCreatedOffspring";
      intCounter1.ValueParameter.ActualName = "NumberOfCreatedOffspring";
      intCounter1.Increment = null;
      intCounter1.IncrementParameter.ActualName = BatchSizeParameter.Name;

      intCounter2.Name = "Increment EvaluatedSolutions";
      intCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
      intCounter2.Increment = null;
      intCounter2.IncrementParameter.ActualName = BatchSizeParameter.Name;

      conditionalSelector.ConditionParameter.ActualName = "SuccessfulOffspring";
      conditionalSelector.ConditionParameter.Depth = 1;
      conditionalSelector.CopySelected.Value = false;

      duplicateSelector.CopySelected.Value = false;

      progressiveOffspringSelector.OffspringListParameter.ActualName = "OffspringList";
      progressiveOffspringSelector.ElitesParameter.ActualName = ElitesParameter.Name;
      progressiveOffspringSelector.MaximumPopulationSizeParameter.ActualName = MaximumPopulationSizeParameter.Name;

      subScopesCounter2.Name = "Count Successful Offspring";
      subScopesCounter2.ValueParameter.ActualName = "NumberOfSuccessfulOffspring";

      calculator1.Name = "NumberOfSuccessfulOffspring == MaximumPopulationSize - Elites";
      calculator1.CollectedValues.Add(new ValueLookupParameter<IntValue>("NumberOfSuccessfulOffspring"));
      calculator1.CollectedValues.Add(new ValueLookupParameter<IntValue>("MaximumPopulationSize"));
      calculator1.CollectedValues.Add(new ValueLookupParameter<IntValue>("Elites"));
      calculator1.ExpressionParameter.Value = new StringValue("NumberOfSuccessfulOffspring MaximumPopulationSize Elites - ==");
      calculator1.ExpressionResultParameter.ActualName = "Break";

      conditionalBranch1.Name = "Break?";
      conditionalBranch1.ConditionParameter.ActualName = "Break";

      comparator1.Name = "NumberOfCreatedOffspring >= Effort";
      comparator1.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      comparator1.LeftSideParameter.ActualName = "NumberOfCreatedOffspring";
      comparator1.RightSideParameter.ActualName = EffortParameter.Name;
      comparator1.ResultParameter.ActualName = "Break";

      conditionalBranch2.Name = "Break?";
      conditionalBranch2.ConditionParameter.ActualName = "Break";

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;

      intCounter3.Name = "Increment Generations";
      intCounter3.Increment = new IntValue(1);
      intCounter3.ValueParameter.ActualName = "Generations";

      subScopesCounter3.Name = "Update CurrentPopulationSize";
      subScopesCounter3.ValueParameter.ActualName = "CurrentPopulationSize";
      subScopesCounter3.AccumulateParameter.Value = new BoolValue(false);

      calculator2.Name = "Evaluate ActualSelectionPressure";
      calculator2.CollectedValues.Add(new ValueLookupParameter<IntValue>("NumberOfCreatedOffspring"));
      calculator2.CollectedValues.Add(new ValueLookupParameter<IntValue>("Elites"));
      calculator2.CollectedValues.Add(new ValueLookupParameter<IntValue>("CurrentPopulationSize"));
      calculator2.ExpressionParameter.Value = new StringValue("NumberOfCreatedOffspring Elites + CurrentPopulationSize /");
      calculator2.ExpressionResultParameter.ActualName = "ActualSelectionPressure";

      comparator2.Name = "CurrentPopulationSize < 1";
      comparator2.Comparison = new Comparison(ComparisonType.Less);
      comparator2.LeftSideParameter.ActualName = "CurrentPopulationSize";
      comparator2.RightSideParameter.Value = new IntValue(1);
      comparator2.ResultParameter.ActualName = "Terminate";

      conditionalBranch3.Name = "Terminate?";
      conditionalBranch3.ConditionParameter.ActualName = "Terminate";

      analyzer2.Name = "Analyzer";
      analyzer2.OperatorParameter.ActualName = "Analyzer";

      comparator3.Name = "Generations >= MaximumGenerations";
      comparator3.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      comparator3.LeftSideParameter.ActualName = "Generations";
      comparator3.ResultParameter.ActualName = "Terminate";
      comparator3.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;

      conditionalBranch4.Name = "Terminate?";
      conditionalBranch4.ConditionParameter.ActualName = "Terminate";

      comparator4.Name = "CurrentPopulationSize < MinimumPopulationSize";
      comparator4.Comparison = new Comparison(ComparisonType.Less);
      comparator4.LeftSideParameter.ActualName = "CurrentPopulationSize";
      comparator4.RightSideParameter.ActualName = MinimumPopulationSizeParameter.Name;
      comparator4.ResultParameter.ActualName = "Terminate";

      conditionalBranch5.Name = "Terminate?";
      conditionalBranch5.ConditionParameter.ActualName = "Terminate";

      assigner3.Name = "Reset NumberOfCreatedOffspring";
      assigner3.LeftSideParameter.ActualName = "NumberOfCreatedOffspring";
      assigner3.RightSideParameter.Value = new IntValue(0);

      assigner4.Name = "Reset NumberOfSuccessfulOffspring";
      assigner4.LeftSideParameter.ActualName = "NumberOfSuccessfulOffspring";
      assigner4.RightSideParameter.Value = new IntValue(0);

      assigner5.Name = "Reset OffspringList";
      assigner5.LeftSideParameter.ActualName = "OffspringList";
      assigner5.RightSideParameter.Value = new ScopeList();

      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
      reevaluateElitesBranch.Name = "Reevaluate elites ?";

      uniformSubScopesProcessor2.Parallel.Value = true;

      evaluator2.Name = "Evaluator (placeholder)";
      evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter4.Name = "Increment EvaluatedSolutions";
      subScopesCounter4.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = assigner1;
      assigner1.Successor = resultsCollector;
      resultsCollector.Successor = analyzer1;
      analyzer1.Successor = selector;
      selector.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(childrenCreator);
      subScopesProcessor1.Successor = calculator1;
      childrenCreator.Successor = uniformSubScopesProcessor;
      uniformSubScopesProcessor.Operator = crossover;
      uniformSubScopesProcessor.Successor = intCounter1;
      crossover.Successor = stochasticBranch;
      stochasticBranch.FirstBranch = mutator;
      stochasticBranch.SecondBranch = null;
      mutator.Successor = null;
      stochasticBranch.Successor = evaluator;
      evaluator.Successor = weightedParentsQualityComparator;
      weightedParentsQualityComparator.Successor = subScopesRemover;
      intCounter1.Successor = intCounter2;
      intCounter2.Successor = conditionalSelector;
      conditionalSelector.Successor = rightReducer1;
      rightReducer1.Successor = duplicateSelector;
      duplicateSelector.Successor = leftReducer1;
      leftReducer1.Successor = progressiveOffspringSelector;
      progressiveOffspringSelector.Successor = subScopesCounter2;
      calculator1.Successor = conditionalBranch1;
      conditionalBranch1.FalseBranch = comparator1;
      conditionalBranch1.TrueBranch = subScopesProcessor2;
      comparator1.Successor = conditionalBranch2;
      conditionalBranch2.FalseBranch = leftReducer2;
      conditionalBranch2.TrueBranch = subScopesProcessor2;
      leftReducer2.Successor = selector;
      subScopesProcessor2.Operators.Add(bestSelector);
      subScopesProcessor2.Operators.Add(scopeCleaner);
      subScopesProcessor2.Successor = mergingReducer;
      bestSelector.Successor = rightReducer2;
      rightReducer2.Successor = reevaluateElitesBranch;
      reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor2;
      uniformSubScopesProcessor2.Operator = evaluator2;
      uniformSubScopesProcessor2.Successor = subScopesCounter4;
      evaluator2.Successor = null;
      subScopesCounter4.Successor = null;
      reevaluateElitesBranch.FalseBranch = null;
      reevaluateElitesBranch.Successor = null;
      scopeCleaner.Successor = scopeRestorer;
      mergingReducer.Successor = intCounter3;
      intCounter3.Successor = subScopesCounter3;
      subScopesCounter3.Successor = calculator2;
      calculator2.Successor = comparator2;
      comparator2.Successor = conditionalBranch3;
      conditionalBranch3.FalseBranch = analyzer2;
      conditionalBranch3.TrueBranch = null;
      analyzer2.Successor = comparator3;
      comparator3.Successor = conditionalBranch4;
      conditionalBranch4.FalseBranch = comparator4;
      conditionalBranch4.TrueBranch = null;
      conditionalBranch4.Successor = null;
      comparator4.Successor = conditionalBranch5;
      conditionalBranch5.FalseBranch = assigner3;
      conditionalBranch5.TrueBranch = null;
      conditionalBranch5.Successor = null;
      assigner3.Successor = assigner4;
      assigner4.Successor = assigner5;
      assigner5.Successor = selector;

      #endregion
    }
예제 #9
0
 private Assigner(Assigner original, Cloner cloner)
     : base(original, cloner)
 {
 }
예제 #10
0
    public SASEGASAMainLoop()
      : base() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<IntValue>("NumberOfVillages", "The initial number of villages."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MigrationInterval", "The fixed period after which migration occurs."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", "The results collection to store the results."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to the analyze the villages."));
      Parameters.Add(new ValueLookupParameter<IOperator>("VillageAnalyzer", "The operator used to analyze each village."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved."));
      Parameters.Add(new LookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactorStart", "The lower bound of the comparison factor (start)."));
      Parameters.Add(new ValueLookupParameter<IOperator>("ComparisonFactorModifier", "The operator used to modify the comparison factor."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("FinalMaximumSelectionPressure", "The maximum selection pressure used when there is only one village left."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum genreation that terminates the algorithm."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      Assigner maxSelPressAssigner = new Assigner();
      Assigner villageCountAssigner = new Assigner();
      Assigner comparisonFactorInitializer = new Assigner();
      UniformSubScopesProcessor uniformSubScopesProcessor0 = new UniformSubScopesProcessor();
      VariableCreator villageVariableCreator = new VariableCreator();
      Placeholder villageAnalyzer1 = new Placeholder();
      ResultsCollector villageResultsCollector1 = new ResultsCollector();
      Placeholder analyzer1 = new Placeholder();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      ConditionalBranch villageTerminatedBySelectionPressure1 = new ConditionalBranch();
      OffspringSelectionGeneticAlgorithmMainOperator mainOperator = new OffspringSelectionGeneticAlgorithmMainOperator();
      Placeholder villageAnalyzer2 = new Placeholder();
      ResultsCollector villageResultsCollector2 = new ResultsCollector();
      Comparator villageSelectionPressureComparator = new Comparator();
      ConditionalBranch villageTerminatedBySelectionPressure2 = new ConditionalBranch();
      IntCounter terminatedVillagesCounter = new IntCounter();
      IntCounter generationsCounter = new IntCounter();
      IntCounter generationsSinceLastReunificationCounter = new IntCounter();
      Comparator reunificationComparator1 = new Comparator();
      ConditionalBranch reunificationConditionalBranch1 = new ConditionalBranch();
      Comparator reunificationComparator2 = new Comparator();
      ConditionalBranch reunificationConditionalBranch2 = new ConditionalBranch();
      Comparator reunificationComparator3 = new Comparator();
      ConditionalBranch reunificationConditionalBranch3 = new ConditionalBranch();
      Assigner resetTerminatedVillagesAssigner = new Assigner();
      Assigner resetGenerationsSinceLastReunificationAssigner = new Assigner();
      SASEGASAReunificator reunificator = new SASEGASAReunificator();
      IntCounter reunificationCounter = new IntCounter();
      Placeholder comparisonFactorModifier = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Assigner villageReviver = new Assigner();
      Comparator villageCountComparator = new Comparator();
      ConditionalBranch villageCountConditionalBranch = new ConditionalBranch();
      Assigner finalMaxSelPressAssigner = new Assigner();
      Comparator maximumGenerationsComparator = new Comparator();
      Comparator maximumEvaluatedSolutionsComparator = new Comparator();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch terminationCondition = new ConditionalBranch();
      ConditionalBranch maximumGenerationsTerminationCondition = new ConditionalBranch();
      ConditionalBranch maximumEvaluatedSolutionsTerminationCondition = new ConditionalBranch();

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Reunifications", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class SASEGASA expects this to be called Generations
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("GenerationsSinceLastReunification", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("TerminatedVillages", new IntValue(0)));

      villageCountAssigner.LeftSideParameter.ActualName = "VillageCount";
      villageCountAssigner.RightSideParameter.ActualName = NumberOfVillagesParameter.Name;

      maxSelPressAssigner.LeftSideParameter.ActualName = "CurrentMaximumSelectionPressure";
      maxSelPressAssigner.RightSideParameter.ActualName = MaximumSelectionPressureParameter.Name;

      comparisonFactorInitializer.LeftSideParameter.ActualName = ComparisonFactorParameter.Name;
      comparisonFactorInitializer.RightSideParameter.ActualName = ComparisonFactorStartParameter.Name;

      villageVariableCreator.CollectedValues.Add(new ValueParameter<ResultCollection>("Results", new ResultCollection()));
      villageVariableCreator.CollectedValues.Add(new ValueParameter<BoolValue>("TerminateSelectionPressure", new BoolValue(false)));
      villageVariableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("SelectionPressure", new DoubleValue(0)));
      villageVariableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("CurrentSuccessRatio", new DoubleValue(0)));

      villageAnalyzer1.Name = "Village Analyzer (placeholder)";
      villageAnalyzer1.OperatorParameter.ActualName = VillageAnalyzerParameter.Name;

      villageResultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio"));
      villageResultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure"));
      villageResultsCollector1.ResultsParameter.ActualName = "Results";

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      resultsCollector1.CopyValue = new BoolValue(false);
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("ComparisonFactor", null, ComparisonFactorParameter.Name));
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Terminated Villages", null, "TerminatedVillages"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Total Active Villages", null, "VillageCount"));
      resultsCollector1.CollectedValues.Add(new ScopeTreeLookupParameter<ResultCollection>("VillageResults", "Result set for each village", "Results"));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      villageTerminatedBySelectionPressure1.Name = "Village Terminated ?";
      villageTerminatedBySelectionPressure1.ConditionParameter.ActualName = "TerminateSelectionPressure";

      mainOperator.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      mainOperator.CrossoverParameter.ActualName = CrossoverParameter.Name;
      mainOperator.CurrentSuccessRatioParameter.ActualName = "CurrentSuccessRatio";
      mainOperator.ElitesParameter.ActualName = ElitesParameter.Name;
      mainOperator.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
      mainOperator.EvaluatedSolutionsParameter.ActualName = EvaluatedSolutionsParameter.Name;
      mainOperator.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
      mainOperator.MaximizationParameter.ActualName = MaximizationParameter.Name;
      mainOperator.MaximumSelectionPressureParameter.ActualName = "CurrentMaximumSelectionPressure";
      mainOperator.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      mainOperator.MutatorParameter.ActualName = MutatorParameter.Name;
      mainOperator.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
      mainOperator.QualityParameter.ActualName = QualityParameter.Name;
      mainOperator.RandomParameter.ActualName = RandomParameter.Name;
      mainOperator.SelectionPressureParameter.ActualName = "SelectionPressure";
      mainOperator.SelectorParameter.ActualName = SelectorParameter.Name;
      mainOperator.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
      mainOperator.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;

      villageAnalyzer2.Name = "Village Analyzer (placeholder)";
      villageAnalyzer2.OperatorParameter.ActualName = VillageAnalyzerParameter.Name;

      villageResultsCollector2.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio"));
      villageResultsCollector2.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure"));
      villageResultsCollector2.ResultsParameter.ActualName = "Results";

      villageSelectionPressureComparator.Name = "SelectionPressure >= CurrentMaximumSelectionPressure ?";
      villageSelectionPressureComparator.LeftSideParameter.ActualName = "SelectionPressure";
      villageSelectionPressureComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      villageSelectionPressureComparator.RightSideParameter.ActualName = "CurrentMaximumSelectionPressure";
      villageSelectionPressureComparator.ResultParameter.ActualName = "TerminateSelectionPressure";

      villageTerminatedBySelectionPressure2.Name = "Village Terminated ?";
      villageTerminatedBySelectionPressure2.ConditionParameter.ActualName = "TerminateSelectionPressure";

      terminatedVillagesCounter.Name = "TerminatedVillages + 1";
      terminatedVillagesCounter.ValueParameter.ActualName = "TerminatedVillages";
      terminatedVillagesCounter.Increment = new IntValue(1);

      generationsCounter.Name = "Generations + 1";
      generationsCounter.ValueParameter.ActualName = "Generations";
      generationsCounter.Increment = new IntValue(1);

      generationsSinceLastReunificationCounter.Name = "GenerationsSinceLastReunification + 1";
      generationsSinceLastReunificationCounter.ValueParameter.ActualName = "GenerationsSinceLastReunification";
      generationsSinceLastReunificationCounter.Increment = new IntValue(1);

      reunificationComparator1.Name = "TerminatedVillages = VillageCount ?";
      reunificationComparator1.LeftSideParameter.ActualName = "TerminatedVillages";
      reunificationComparator1.Comparison = new Comparison(ComparisonType.Equal);
      reunificationComparator1.RightSideParameter.ActualName = "VillageCount";
      reunificationComparator1.ResultParameter.ActualName = "Reunificate";

      reunificationConditionalBranch1.Name = "Reunificate ?";
      reunificationConditionalBranch1.ConditionParameter.ActualName = "Reunificate";

      reunificationComparator2.Name = "GenerationsSinceLastReunification = MigrationInterval ?";
      reunificationComparator2.LeftSideParameter.ActualName = "GenerationsSinceLastReunification";
      reunificationComparator2.Comparison = new Comparison(ComparisonType.Equal);
      reunificationComparator2.RightSideParameter.ActualName = "MigrationInterval";
      reunificationComparator2.ResultParameter.ActualName = "Reunificate";

      reunificationConditionalBranch2.Name = "Reunificate ?";
      reunificationConditionalBranch2.ConditionParameter.ActualName = "Reunificate";

      // if there's just one village left and we're getting to this point SASEGASA terminates
      reunificationComparator3.Name = "VillageCount <= 1 ?";
      reunificationComparator3.LeftSideParameter.ActualName = "VillageCount";
      reunificationComparator3.RightSideParameter.Value = new IntValue(1);
      reunificationComparator3.Comparison.Value = ComparisonType.LessOrEqual;
      reunificationComparator3.ResultParameter.ActualName = "TerminateSASEGASA";

      reunificationConditionalBranch3.Name = "Skip reunification?";
      reunificationConditionalBranch3.ConditionParameter.ActualName = "TerminateSASEGASA";

      resetTerminatedVillagesAssigner.Name = "Reset TerminatedVillages";
      resetTerminatedVillagesAssigner.LeftSideParameter.ActualName = "TerminatedVillages";
      resetTerminatedVillagesAssigner.RightSideParameter.Value = new IntValue(0);

      resetGenerationsSinceLastReunificationAssigner.Name = "Reset GenerationsSinceLastReunification";
      resetGenerationsSinceLastReunificationAssigner.LeftSideParameter.ActualName = "GenerationsSinceLastReunification";
      resetGenerationsSinceLastReunificationAssigner.RightSideParameter.Value = new IntValue(0);

      reunificator.VillageCountParameter.ActualName = "VillageCount";

      reunificationCounter.ValueParameter.ActualName = "Reunifications"; // this variable is referenced in SASEGASA, do not change!
      reunificationCounter.IncrementParameter.Value = new IntValue(1);

      comparisonFactorModifier.Name = "Update comparison factor (placeholder)";
      comparisonFactorModifier.OperatorParameter.ActualName = ComparisonFactorModifierParameter.Name;

      villageReviver.Name = "Village Reviver";
      villageReviver.LeftSideParameter.ActualName = "TerminateSelectionPressure";
      villageReviver.RightSideParameter.Value = new BoolValue(false);

      villageCountComparator.Name = "VillageCount == 1 ?";
      villageCountComparator.LeftSideParameter.ActualName = "VillageCount";
      villageCountComparator.RightSideParameter.Value = new IntValue(1);
      villageCountComparator.Comparison.Value = ComparisonType.Equal;
      villageCountComparator.ResultParameter.ActualName = "ChangeMaxSelPress";

      villageCountConditionalBranch.Name = "Change max selection pressure?";
      villageCountConditionalBranch.ConditionParameter.ActualName = "ChangeMaxSelPress";

      finalMaxSelPressAssigner.LeftSideParameter.ActualName = "CurrentMaximumSelectionPressure";
      finalMaxSelPressAssigner.RightSideParameter.ActualName = FinalMaximumSelectionPressureParameter.Name;

      // if Generations is reaching MaximumGenerations we're also terminating
      maximumGenerationsComparator.LeftSideParameter.ActualName = "Generations";
      maximumGenerationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;
      maximumGenerationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maximumGenerationsComparator.ResultParameter.ActualName = "TerminateMaximumGenerations";

      maximumEvaluatedSolutionsComparator.Name = "EvaluatedSolutions >= MaximumEvaluatedSolutions";
      maximumEvaluatedSolutionsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maximumEvaluatedSolutionsComparator.LeftSideParameter.ActualName = EvaluatedSolutionsParameter.Name;
      maximumEvaluatedSolutionsComparator.ResultParameter.ActualName = "TerminateEvaluatedSolutions";
      maximumEvaluatedSolutionsComparator.RightSideParameter.ActualName = "MaximumEvaluatedSolutions";

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      terminationCondition.ConditionParameter.ActualName = "TerminateSASEGASA";
      maximumGenerationsTerminationCondition.ConditionParameter.ActualName = "TerminateMaximumGenerations";
      maximumEvaluatedSolutionsTerminationCondition.ConditionParameter.ActualName = "TerminateEvaluatedSolutions";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = maxSelPressAssigner;
      maxSelPressAssigner.Successor = villageCountAssigner;
      villageCountAssigner.Successor = comparisonFactorInitializer;
      comparisonFactorInitializer.Successor = uniformSubScopesProcessor0;
      uniformSubScopesProcessor0.Operator = villageVariableCreator;
      uniformSubScopesProcessor0.Successor = analyzer1;
      villageVariableCreator.Successor = villageAnalyzer1;
      villageAnalyzer1.Successor = villageResultsCollector1;
      analyzer1.Successor = resultsCollector1;
      resultsCollector1.Successor = uniformSubScopesProcessor1;
      uniformSubScopesProcessor1.Operator = villageTerminatedBySelectionPressure1;
      uniformSubScopesProcessor1.Successor = generationsCounter;
      villageTerminatedBySelectionPressure1.TrueBranch = null;
      villageTerminatedBySelectionPressure1.FalseBranch = mainOperator;
      villageTerminatedBySelectionPressure1.Successor = null;
      mainOperator.Successor = villageAnalyzer2;
      villageAnalyzer2.Successor = villageResultsCollector2;
      villageResultsCollector2.Successor = villageSelectionPressureComparator;
      villageSelectionPressureComparator.Successor = villageTerminatedBySelectionPressure2;
      villageTerminatedBySelectionPressure2.TrueBranch = terminatedVillagesCounter;
      villageTerminatedBySelectionPressure2.FalseBranch = null;
      villageTerminatedBySelectionPressure2.Successor = null;
      terminatedVillagesCounter.Successor = null;
      generationsCounter.Successor = generationsSinceLastReunificationCounter;
      generationsSinceLastReunificationCounter.Successor = reunificationComparator1;
      reunificationComparator1.Successor = reunificationConditionalBranch1;
      reunificationConditionalBranch1.TrueBranch = reunificationComparator3;
      reunificationConditionalBranch1.FalseBranch = reunificationComparator2;
      reunificationConditionalBranch1.Successor = maximumGenerationsComparator;
      reunificationComparator2.Successor = reunificationConditionalBranch2;
      reunificationConditionalBranch2.TrueBranch = reunificationComparator3;
      reunificationConditionalBranch2.FalseBranch = null;
      reunificationConditionalBranch2.Successor = null;
      reunificationComparator3.Successor = reunificationConditionalBranch3;
      reunificationConditionalBranch3.TrueBranch = null;
      reunificationConditionalBranch3.FalseBranch = resetTerminatedVillagesAssigner;
      reunificationConditionalBranch3.Successor = null;
      resetTerminatedVillagesAssigner.Successor = resetGenerationsSinceLastReunificationAssigner;
      resetGenerationsSinceLastReunificationAssigner.Successor = reunificator;
      reunificator.Successor = reunificationCounter;
      reunificationCounter.Successor = comparisonFactorModifier;
      comparisonFactorModifier.Successor = uniformSubScopesProcessor2;
      uniformSubScopesProcessor2.Operator = villageReviver;
      uniformSubScopesProcessor2.Successor = villageCountComparator;
      villageReviver.Successor = null;
      villageCountComparator.Successor = villageCountConditionalBranch;
      villageCountConditionalBranch.TrueBranch = finalMaxSelPressAssigner;
      villageCountConditionalBranch.FalseBranch = null;
      villageCountConditionalBranch.Successor = null;
      finalMaxSelPressAssigner.Successor = null;
      maximumGenerationsComparator.Successor = maximumEvaluatedSolutionsComparator;
      maximumEvaluatedSolutionsComparator.Successor = analyzer2;
      analyzer2.Successor = terminationCondition;
      terminationCondition.TrueBranch = null;
      terminationCondition.FalseBranch = maximumGenerationsTerminationCondition;
      terminationCondition.Successor = null;
      maximumGenerationsTerminationCondition.TrueBranch = null;
      maximumGenerationsTerminationCondition.FalseBranch = maximumEvaluatedSolutionsTerminationCondition;
      maximumGenerationsTerminationCondition.Successor = null;
      maximumEvaluatedSolutionsTerminationCondition.TrueBranch = null;
      maximumEvaluatedSolutionsTerminationCondition.FalseBranch = uniformSubScopesProcessor1;
      maximumEvaluatedSolutionsTerminationCondition.Successor = null;
      #endregion
    }
    public IslandOffspringSelectionGeneticAlgorithmMainLoop()
      : base() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<IntValue>("NumberOfIslands", "The number of islands."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MigrationInterval", "The number of generations that should pass between migration phases."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MigrationRate", "The proportion of individuals that should migrate between the islands."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Migrator", "The migration strategy."));
      Parameters.Add(new ValueLookupParameter<IOperator>("EmigrantsSelector", "Selects the individuals that will be migrated."));
      Parameters.Add(new ValueLookupParameter<IOperator>("ImmigrationReplacer", "Replaces part of the original population with the immigrants."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population of solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations that should be processed."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", "The results collection to store the results."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Visualizer", "The operator used to visualize solutions."));
      Parameters.Add(new LookupParameter<IItem>("Visualization", "The item which represents the visualization of solutions."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved."));
      Parameters.Add(new LookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactorStart", "The initial value for the comparison factor."));
      Parameters.Add(new ValueLookupParameter<IOperator>("ComparisonFactorModifier", "The operator used to modify the comparison factor."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to the analyze the islands."));
      Parameters.Add(new ValueLookupParameter<IOperator>("IslandAnalyzer", "The operator used to analyze each island."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor0 = new UniformSubScopesProcessor();
      VariableCreator islandVariableCreator = new VariableCreator();
      Placeholder islandAnalyzer1 = new Placeholder();
      ResultsCollector islandResultsCollector1 = new ResultsCollector();
      Assigner comparisonFactorInitializer = new Assigner();
      Placeholder analyzer1 = new Placeholder();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      ConditionalBranch islandTerminatedBySelectionPressure1 = new ConditionalBranch();
      OffspringSelectionGeneticAlgorithmMainOperator mainOperator = new OffspringSelectionGeneticAlgorithmMainOperator();
      Placeholder islandAnalyzer2 = new Placeholder();
      ResultsCollector islandResultsCollector2 = new ResultsCollector();
      Comparator islandSelectionPressureComparator = new Comparator();
      ConditionalBranch islandTerminatedBySelectionPressure2 = new ConditionalBranch();
      IntCounter terminatedIslandsCounter = new IntCounter();
      IntCounter generationsCounter = new IntCounter();
      IntCounter generationsSinceLastMigrationCounter = new IntCounter();
      Comparator migrationComparator = new Comparator();
      ConditionalBranch migrationBranch = new ConditionalBranch();
      Assigner resetTerminatedIslandsAssigner = new Assigner();
      Assigner resetGenerationsSinceLastMigrationAssigner = new Assigner();
      IntCounter migrationsCounter = new IntCounter();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Assigner reviveIslandAssigner = new Assigner();
      Placeholder emigrantsSelector = new Placeholder();
      Placeholder migrator = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
      Placeholder immigrationReplacer = new Placeholder();
      Comparator generationsComparator = new Comparator();
      Comparator terminatedIslandsComparator = new Comparator();
      Comparator maxEvaluatedSolutionsComparator = new Comparator();
      Placeholder comparisonFactorModifier = new Placeholder();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch generationsTerminationCondition = new ConditionalBranch();
      ConditionalBranch terminatedIslandsCondition = new ConditionalBranch();
      ConditionalBranch evaluatedSolutionsTerminationCondition = new ConditionalBranch();

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Migrations", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class IslandOffspringSelectionGeneticAlgorithm expects this to be called Generations
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("GenerationsSinceLastMigration", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("TerminatedIslands", new IntValue(0)));

      islandVariableCreator.CollectedValues.Add(new ValueParameter<ResultCollection>(ResultsParameter.Name, new ResultCollection()));
      islandVariableCreator.CollectedValues.Add(new ValueParameter<BoolValue>("TerminateSelectionPressure", new BoolValue(false)));
      islandVariableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("SelectionPressure", new DoubleValue(0)));

      islandAnalyzer1.Name = "Island Analyzer (placeholder)";
      islandAnalyzer1.OperatorParameter.ActualName = IslandAnalyzerParameter.Name;

      islandResultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure"));
      islandResultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio"));
      islandResultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      comparisonFactorInitializer.Name = "Initialize Comparison Factor";
      comparisonFactorInitializer.LeftSideParameter.ActualName = ComparisonFactorParameter.Name;
      comparisonFactorInitializer.RightSideParameter.ActualName = ComparisonFactorStartParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      resultsCollector1.CopyValue = new BoolValue(false);
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Migrations"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Comparison Factor", null, ComparisonFactorParameter.Name));
      resultsCollector1.CollectedValues.Add(new ScopeTreeLookupParameter<ResultCollection>("IslandResults", "Result set for each island", ResultsParameter.Name));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      islandTerminatedBySelectionPressure1.Name = "Island Terminated ?";
      islandTerminatedBySelectionPressure1.ConditionParameter.ActualName = "TerminateSelectionPressure";

      mainOperator.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      mainOperator.CrossoverParameter.ActualName = CrossoverParameter.Name;
      mainOperator.CurrentSuccessRatioParameter.ActualName = "CurrentSuccessRatio";
      mainOperator.ElitesParameter.ActualName = ElitesParameter.Name;
      mainOperator.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
      mainOperator.EvaluatedSolutionsParameter.ActualName = EvaluatedSolutionsParameter.Name;
      mainOperator.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
      mainOperator.MaximizationParameter.ActualName = MaximizationParameter.Name;
      mainOperator.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
      mainOperator.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      mainOperator.MutatorParameter.ActualName = MutatorParameter.Name;
      mainOperator.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
      mainOperator.QualityParameter.ActualName = QualityParameter.Name;
      mainOperator.RandomParameter.ActualName = RandomParameter.Name;
      mainOperator.SelectionPressureParameter.ActualName = "SelectionPressure";
      mainOperator.SelectorParameter.ActualName = SelectorParameter.Name;
      mainOperator.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
      mainOperator.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;

      islandAnalyzer2.Name = "Island Analyzer (placeholder)";
      islandAnalyzer2.OperatorParameter.ActualName = IslandAnalyzerParameter.Name;

      islandResultsCollector2.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure"));
      islandResultsCollector2.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio"));
      islandResultsCollector2.ResultsParameter.ActualName = "Results";

      islandSelectionPressureComparator.Name = "SelectionPressure >= MaximumSelectionPressure ?";
      islandSelectionPressureComparator.LeftSideParameter.ActualName = "SelectionPressure";
      islandSelectionPressureComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      islandSelectionPressureComparator.RightSideParameter.ActualName = MaximumSelectionPressureParameter.Name;
      islandSelectionPressureComparator.ResultParameter.ActualName = "TerminateSelectionPressure";

      islandTerminatedBySelectionPressure2.Name = "Island Terminated ?";
      islandTerminatedBySelectionPressure2.ConditionParameter.ActualName = "TerminateSelectionPressure";

      terminatedIslandsCounter.Name = "TerminatedIslands + 1";
      terminatedIslandsCounter.ValueParameter.ActualName = "TerminatedIslands";
      terminatedIslandsCounter.Increment = new IntValue(1);

      generationsCounter.Name = "Generations + 1";
      generationsCounter.ValueParameter.ActualName = "Generations";
      generationsCounter.Increment = new IntValue(1);

      generationsSinceLastMigrationCounter.Name = "GenerationsSinceLastMigration + 1";
      generationsSinceLastMigrationCounter.ValueParameter.ActualName = "GenerationsSinceLastMigration";
      generationsSinceLastMigrationCounter.Increment = new IntValue(1);

      migrationComparator.Name = "GenerationsSinceLastMigration = MigrationInterval ?";
      migrationComparator.LeftSideParameter.ActualName = "GenerationsSinceLastMigration";
      migrationComparator.Comparison = new Comparison(ComparisonType.Equal);
      migrationComparator.RightSideParameter.ActualName = MigrationIntervalParameter.Name;
      migrationComparator.ResultParameter.ActualName = "Migrate";

      migrationBranch.Name = "Migrate?";
      migrationBranch.ConditionParameter.ActualName = "Migrate";

      resetTerminatedIslandsAssigner.Name = "Reset TerminatedIslands";
      resetTerminatedIslandsAssigner.LeftSideParameter.ActualName = "TerminatedIslands";
      resetTerminatedIslandsAssigner.RightSideParameter.Value = new IntValue(0);

      resetGenerationsSinceLastMigrationAssigner.Name = "Reset GenerationsSinceLastMigration";
      resetGenerationsSinceLastMigrationAssigner.LeftSideParameter.ActualName = "GenerationsSinceLastMigration";
      resetGenerationsSinceLastMigrationAssigner.RightSideParameter.Value = new IntValue(0);

      migrationsCounter.Name = "Migrations + 1";
      migrationsCounter.IncrementParameter.Value = new IntValue(1);
      migrationsCounter.ValueParameter.ActualName = "Migrations";

      reviveIslandAssigner.Name = "Revive Island";
      reviveIslandAssigner.LeftSideParameter.ActualName = "TerminateSelectionPressure";
      reviveIslandAssigner.RightSideParameter.Value = new BoolValue(false);

      emigrantsSelector.Name = "Emigrants Selector (placeholder)";
      emigrantsSelector.OperatorParameter.ActualName = EmigrantsSelectorParameter.Name;

      migrator.Name = "Migrator (placeholder)";
      migrator.OperatorParameter.ActualName = MigratorParameter.Name;

      immigrationReplacer.Name = "Immigration Replacer (placeholder)";
      immigrationReplacer.OperatorParameter.ActualName = ImmigrationReplacerParameter.Name;

      generationsComparator.Name = "Generations >= MaximumGenerations ?";
      generationsComparator.LeftSideParameter.ActualName = "Generations";
      generationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      generationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;
      generationsComparator.ResultParameter.ActualName = "TerminateGenerations";

      terminatedIslandsComparator.Name = "All Islands terminated ?";
      terminatedIslandsComparator.LeftSideParameter.ActualName = "TerminatedIslands";
      terminatedIslandsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      terminatedIslandsComparator.RightSideParameter.ActualName = NumberOfIslandsParameter.Name;
      terminatedIslandsComparator.ResultParameter.ActualName = "TerminateTerminatedIslands";

      maxEvaluatedSolutionsComparator.Name = "EvaluatedSolutions >= MaximumEvaluatedSolutions ?";
      maxEvaluatedSolutionsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maxEvaluatedSolutionsComparator.LeftSideParameter.ActualName = EvaluatedSolutionsParameter.Name;
      maxEvaluatedSolutionsComparator.ResultParameter.ActualName = "TerminateEvaluatedSolutions";
      maxEvaluatedSolutionsComparator.RightSideParameter.ActualName = "MaximumEvaluatedSolutions";

      comparisonFactorModifier.Name = "Update Comparison Factor (Placeholder)";
      comparisonFactorModifier.OperatorParameter.ActualName = ComparisonFactorModifierParameter.Name;

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      generationsTerminationCondition.Name = "Terminate (MaxGenerations) ?";
      generationsTerminationCondition.ConditionParameter.ActualName = "TerminateGenerations";

      terminatedIslandsCondition.Name = "Terminate (TerminatedIslands) ?";
      terminatedIslandsCondition.ConditionParameter.ActualName = "TerminateTerminatedIslands";

      evaluatedSolutionsTerminationCondition.Name = "Terminate (EvaluatedSolutions) ?";
      evaluatedSolutionsTerminationCondition.ConditionParameter.ActualName = "TerminateEvaluatedSolutions";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = uniformSubScopesProcessor0;
      uniformSubScopesProcessor0.Operator = islandVariableCreator;
      uniformSubScopesProcessor0.Successor = comparisonFactorInitializer;
      islandVariableCreator.Successor = islandAnalyzer1;
      islandAnalyzer1.Successor = islandResultsCollector1;
      islandResultsCollector1.Successor = null;
      comparisonFactorInitializer.Successor = analyzer1;
      analyzer1.Successor = resultsCollector1;
      resultsCollector1.Successor = uniformSubScopesProcessor1;
      uniformSubScopesProcessor1.Operator = islandTerminatedBySelectionPressure1;
      uniformSubScopesProcessor1.Successor = generationsCounter;
      islandTerminatedBySelectionPressure1.TrueBranch = null;
      islandTerminatedBySelectionPressure1.FalseBranch = mainOperator;
      islandTerminatedBySelectionPressure1.Successor = null;
      mainOperator.Successor = islandAnalyzer2;
      islandAnalyzer2.Successor = islandResultsCollector2;
      islandResultsCollector2.Successor = islandSelectionPressureComparator;
      islandSelectionPressureComparator.Successor = islandTerminatedBySelectionPressure2;
      islandTerminatedBySelectionPressure2.TrueBranch = terminatedIslandsCounter;
      islandTerminatedBySelectionPressure2.FalseBranch = null;
      islandTerminatedBySelectionPressure2.Successor = null;
      generationsCounter.Successor = generationsSinceLastMigrationCounter;
      generationsSinceLastMigrationCounter.Successor = migrationComparator;
      migrationComparator.Successor = migrationBranch;
      migrationBranch.TrueBranch = resetTerminatedIslandsAssigner;
      migrationBranch.FalseBranch = null;
      migrationBranch.Successor = generationsComparator;
      resetTerminatedIslandsAssigner.Successor = resetGenerationsSinceLastMigrationAssigner;
      resetGenerationsSinceLastMigrationAssigner.Successor = migrationsCounter;
      migrationsCounter.Successor = uniformSubScopesProcessor2;
      uniformSubScopesProcessor2.Operator = reviveIslandAssigner;
      uniformSubScopesProcessor2.Successor = migrator;
      reviveIslandAssigner.Successor = emigrantsSelector;
      emigrantsSelector.Successor = null;
      migrator.Successor = uniformSubScopesProcessor3;
      uniformSubScopesProcessor3.Operator = immigrationReplacer;
      uniformSubScopesProcessor3.Successor = null;
      immigrationReplacer.Successor = null;
      generationsComparator.Successor = terminatedIslandsComparator;
      terminatedIslandsComparator.Successor = maxEvaluatedSolutionsComparator;
      maxEvaluatedSolutionsComparator.Successor = comparisonFactorModifier;
      comparisonFactorModifier.Successor = analyzer2;
      analyzer2.Successor = generationsTerminationCondition;
      generationsTerminationCondition.TrueBranch = null;
      generationsTerminationCondition.FalseBranch = terminatedIslandsCondition;
      generationsTerminationCondition.Successor = null;
      terminatedIslandsCondition.TrueBranch = null;
      terminatedIslandsCondition.FalseBranch = evaluatedSolutionsTerminationCondition;
      terminatedIslandsCondition.Successor = null;
      evaluatedSolutionsTerminationCondition.TrueBranch = null;
      evaluatedSolutionsTerminationCondition.FalseBranch = uniformSubScopesProcessor1;
      evaluatedSolutionsTerminationCondition.Successor = null;
      #endregion
    }
    public IslandGeneticAlgorithmMainLoop()
      : base() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<IntValue>("NumberOfIslands", "The number of islands."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MigrationInterval", "The number of generations that should pass between migration phases."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MigrationRate", "The proportion of individuals that should migrate between the islands."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Migrator", "The migration strategy."));
      Parameters.Add(new ValueLookupParameter<IOperator>("EmigrantsSelector", "Selects the individuals that will be migrated."));
      Parameters.Add(new ValueLookupParameter<IOperator>("ImmigrationReplacer", "Replaces some of the original population with the immigrants."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population of solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations that the algorithm should process."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", "The results collection to store the results."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to the analyze the islands."));
      Parameters.Add(new ValueLookupParameter<IOperator>("IslandAnalyzer", "The operator used to analyze each island."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times a solution has been evaluated."));
      Parameters.Add(new LookupParameter<IntValue>("IslandGenerations", "The number of generations calculated on one island."));
      Parameters.Add(new LookupParameter<IntValue>("IslandEvaluatedSolutions", "The number of times a solution has been evaluated on one island."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Migrate", "Migrate the island?"));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor0 = new UniformSubScopesProcessor();
      VariableCreator islandVariableCreator = new VariableCreator();
      Placeholder islandAnalyzer1 = new Placeholder();
      LocalRandomCreator localRandomCreator = new LocalRandomCreator();
      Placeholder analyzer1 = new Placeholder();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      Assigner generationsAssigner = new Assigner();
      Assigner evaluatedSolutionsAssigner = new Assigner();
      Placeholder selector = new Placeholder();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Placeholder crossover = new Placeholder();
      StochasticBranch stochasticBranch = new StochasticBranch();
      Placeholder mutator = new Placeholder();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
      Placeholder evaluator = new Placeholder();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
      BestSelector bestSelector = new BestSelector();
      RightReducer rightReducer = new RightReducer();
      MergingReducer mergingReducer = new MergingReducer();
      IntCounter islandGenerationsCounter = new IntCounter();
      Comparator checkIslandGenerationsReachedMaximum = new Comparator();
      ConditionalBranch checkContinueEvolution = new ConditionalBranch();
      DataReducer generationsReducer = new DataReducer();
      DataReducer evaluatedSolutionsReducer = new DataReducer();
      Placeholder islandAnalyzer2 = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor5 = new UniformSubScopesProcessor();
      Placeholder emigrantsSelector = new Placeholder();
      IntCounter migrationsCounter = new IntCounter();
      Placeholder migrator = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor6 = new UniformSubScopesProcessor();
      Placeholder immigrationReplacer = new Placeholder();
      Comparator generationsComparator = new Comparator();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch generationsTerminationCondition = new ConditionalBranch();
      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();


      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Migrations", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("GenerationsSinceLastMigration", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class IslandGeneticAlgorithm expects this to be called Generations

      islandVariableCreator.CollectedValues.Add(new ValueParameter<ResultCollection>("Results", new ResultCollection()));
      islandVariableCreator.CollectedValues.Add(new ValueParameter<IntValue>("IslandGenerations", new IntValue(0)));
      islandVariableCreator.CollectedValues.Add(new ValueParameter<IntValue>("IslandEvaluatedSolutions", new IntValue(0)));

      islandAnalyzer1.Name = "Island Analyzer (placeholder)";
      islandAnalyzer1.OperatorParameter.ActualName = IslandAnalyzerParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Migrations"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector1.CollectedValues.Add(new ScopeTreeLookupParameter<ResultCollection>("IslandResults", "Result set for each island", "Results"));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      uniformSubScopesProcessor1.Parallel.Value = true;

      generationsAssigner.Name = "Initialize Island Generations";
      generationsAssigner.LeftSideParameter.ActualName = IslandGenerations.Name;
      generationsAssigner.RightSideParameter.Value = new IntValue(0);

      evaluatedSolutionsAssigner.Name = "Initialize Island evaluated solutions";
      evaluatedSolutionsAssigner.LeftSideParameter.ActualName = IslandEvaluatedSolutions.Name;
      evaluatedSolutionsAssigner.RightSideParameter.Value = new IntValue(0);

      selector.Name = "Selector (placeholder)";
      selector.OperatorParameter.ActualName = SelectorParameter.Name;

      childrenCreator.ParentsPerChild = new IntValue(2);

      crossover.Name = "Crossover (placeholder)";
      crossover.OperatorParameter.ActualName = CrossoverParameter.Name;

      stochasticBranch.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      //set it to the random number generator of the island
      stochasticBranch.RandomParameter.ActualName = "LocalRandom";

      mutator.Name = "Mutator (placeholder)";
      mutator.OperatorParameter.ActualName = MutatorParameter.Name;

      subScopesRemover.RemoveAllSubScopes = true;

      evaluator.Name = "Evaluator (placeholder)";
      evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter.Name = "Increment EvaluatedSolutions";
      subScopesCounter.ValueParameter.ActualName = IslandEvaluatedSolutions.Name;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;

      islandGenerationsCounter.Name = "Increment island generatrions";
      islandGenerationsCounter.ValueParameter.ActualName = IslandGenerations.Name;
      islandGenerationsCounter.Increment = new IntValue(1);

      checkIslandGenerationsReachedMaximum.LeftSideParameter.ActualName = IslandGenerations.Name;
      checkIslandGenerationsReachedMaximum.RightSideParameter.ActualName = MigrationIntervalParameter.Name;
      checkIslandGenerationsReachedMaximum.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      checkIslandGenerationsReachedMaximum.ResultParameter.ActualName = Migrate.Name;

      checkContinueEvolution.Name = "Migrate?";
      checkContinueEvolution.ConditionParameter.ActualName = Migrate.Name;
      checkContinueEvolution.FalseBranch = selector;

      islandAnalyzer2.Name = "Island Analyzer (placeholder)";
      islandAnalyzer2.OperatorParameter.ActualName = IslandAnalyzerParameter.Name;

      generationsReducer.Name = "Increment Generations";
      generationsReducer.ParameterToReduce.ActualName = islandGenerationsCounter.ValueParameter.ActualName;
      generationsReducer.TargetParameter.ActualName = "Generations";
      generationsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Min);
      generationsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum);

      evaluatedSolutionsReducer.Name = "Increment Evaluated Solutions";
      evaluatedSolutionsReducer.ParameterToReduce.ActualName = IslandEvaluatedSolutions.Name;
      evaluatedSolutionsReducer.TargetParameter.ActualName = EvaluatedSolutionsParameter.Name;
      evaluatedSolutionsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum);
      evaluatedSolutionsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum);

      emigrantsSelector.Name = "Emigrants Selector (placeholder)";
      emigrantsSelector.OperatorParameter.ActualName = EmigrantsSelectorParameter.Name;

      migrationsCounter.Name = "Increment number of Migrations";
      migrationsCounter.ValueParameter.ActualName = "Migrations";
      migrationsCounter.Increment = new IntValue(1);

      migrator.Name = "Migrator (placeholder)";
      migrator.OperatorParameter.ActualName = MigratorParameter.Name;

      immigrationReplacer.Name = "Immigration Replacer (placeholder)";
      immigrationReplacer.OperatorParameter.ActualName = ImmigrationReplacerParameter.Name;

      generationsComparator.Name = "Generations >= MaximumGenerations ?";
      generationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      generationsComparator.LeftSideParameter.ActualName = "Generations";
      generationsComparator.ResultParameter.ActualName = "TerminateGenerations";
      generationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      generationsTerminationCondition.Name = "Terminate?";
      generationsTerminationCondition.ConditionParameter.ActualName = "TerminateGenerations";

      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
      reevaluateElitesBranch.Name = "Reevaluate elites ?";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = uniformSubScopesProcessor0;
      uniformSubScopesProcessor0.Operator = islandVariableCreator;
      uniformSubScopesProcessor0.Successor = analyzer1;
      islandVariableCreator.Successor = islandAnalyzer1;
      // BackwardsCompatibility3.3
      //the local randoms are created by the island GA itself and are only here to ensure same algorithm results
      #region Backwards compatible code, remove local random creator with 3.4 and rewire the operator graph
      islandAnalyzer1.Successor = localRandomCreator;
      localRandomCreator.Successor = null;
      #endregion
      analyzer1.Successor = resultsCollector1;
      resultsCollector1.Successor = uniformSubScopesProcessor1;
      uniformSubScopesProcessor1.Operator = generationsAssigner;
      uniformSubScopesProcessor1.Successor = generationsReducer;
      generationsReducer.Successor = evaluatedSolutionsReducer;
      evaluatedSolutionsReducer.Successor = migrationsCounter;
      migrationsCounter.Successor = uniformSubScopesProcessor5;
      generationsAssigner.Successor = evaluatedSolutionsAssigner;
      evaluatedSolutionsAssigner.Successor = selector;
      selector.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(childrenCreator);
      subScopesProcessor1.Successor = subScopesProcessor2;
      childrenCreator.Successor = uniformSubScopesProcessor2;
      uniformSubScopesProcessor2.Operator = crossover;
      uniformSubScopesProcessor2.Successor = uniformSubScopesProcessor3;
      crossover.Successor = stochasticBranch;
      stochasticBranch.FirstBranch = mutator;
      stochasticBranch.SecondBranch = null;
      stochasticBranch.Successor = subScopesRemover;
      mutator.Successor = null;
      subScopesRemover.Successor = null;
      uniformSubScopesProcessor3.Operator = evaluator;
      uniformSubScopesProcessor3.Successor = subScopesCounter;
      evaluator.Successor = null;
      subScopesCounter.Successor = null;
      subScopesProcessor2.Operators.Add(bestSelector);
      subScopesProcessor2.Operators.Add(new EmptyOperator());
      subScopesProcessor2.Successor = mergingReducer;
      mergingReducer.Successor = islandAnalyzer2;
      bestSelector.Successor = rightReducer;
      rightReducer.Successor = reevaluateElitesBranch;
      reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor3;
      reevaluateElitesBranch.FalseBranch = null;
      reevaluateElitesBranch.Successor = null;
      islandAnalyzer2.Successor = islandGenerationsCounter;
      islandGenerationsCounter.Successor = checkIslandGenerationsReachedMaximum;
      checkIslandGenerationsReachedMaximum.Successor = checkContinueEvolution;
      uniformSubScopesProcessor5.Operator = emigrantsSelector;
      emigrantsSelector.Successor = null;
      uniformSubScopesProcessor5.Successor = migrator;
      migrator.Successor = uniformSubScopesProcessor6;
      uniformSubScopesProcessor6.Operator = immigrationReplacer;
      uniformSubScopesProcessor6.Successor = generationsComparator;
      generationsComparator.Successor = analyzer2;
      analyzer2.Successor = generationsTerminationCondition;
      generationsTerminationCondition.TrueBranch = null;
      generationsTerminationCondition.FalseBranch = uniformSubScopesProcessor1;
      generationsTerminationCondition.Successor = null;
      #endregion
    }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new LookupParameter<DoubleValue>("MoveQuality", "The value which represents the quality of a move."));
      Parameters.Add(new LookupParameter<DoubleValue>("Temperature", "The current temperature."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("StartTemperature", "The initial temperature."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("EndTemperature", "The end temperature."));
      Parameters.Add(new ValueLookupParameter<IntValue>("InnerIterations", "The amount of inner iterations (number of moves before temperature is adjusted again)."));
      Parameters.Add(new LookupParameter<IntValue>("Iterations", "The number of iterations."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of iterations which should be processed."));

      Parameters.Add(new ValueLookupParameter<IOperator>("MoveGenerator", "The operator that generates the moves."));
      Parameters.Add(new ValueLookupParameter<IOperator>("MoveEvaluator", "The operator that evaluates a move."));
      Parameters.Add(new ValueLookupParameter<IOperator>("MoveMaker", "The operator that performs a move and updates the quality."));
      Parameters.Add(new ValueLookupParameter<IOperator>("AnnealingOperator", "The operator that modifies the temperature."));

      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedMoves", "The number of evaluated moves."));
      #endregion

      #region Create operators
      Assigner temperatureInitializer = new Assigner();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      SubScopesProcessor subScopesProcessor0 = new SubScopesProcessor();
      Placeholder analyzer1 = new Placeholder();
      SubScopesProcessor sssp = new SubScopesProcessor();
      ResultsCollector resultsCollector = new ResultsCollector();
      Placeholder annealingOperator = new Placeholder();
      UniformSubScopesProcessor mainProcessor = new UniformSubScopesProcessor();
      Placeholder moveGenerator = new Placeholder();
      UniformSubScopesProcessor moveEvaluationProcessor = new UniformSubScopesProcessor();
      Placeholder moveEvaluator = new Placeholder();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      ProbabilisticQualityComparator qualityComparator = new ProbabilisticQualityComparator();
      ConditionalBranch improvesQualityBranch = new ConditionalBranch();
      Placeholder moveMaker = new Placeholder();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      IntCounter iterationsCounter = new IntCounter();
      Comparator iterationsComparator = new Comparator();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch iterationsTermination = new ConditionalBranch();

      temperatureInitializer.LeftSideParameter.ActualName = TemperatureParameter.ActualName;
      temperatureInitializer.RightSideParameter.ActualName = StartTemperatureParameter.Name;

      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>(IterationsParameter.Name));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      annealingOperator.Name = "Annealing operator (placeholder)";
      annealingOperator.OperatorParameter.ActualName = AnnealingOperatorParameter.Name;

      moveGenerator.Name = "Move generator (placeholder)";
      moveGenerator.OperatorParameter.ActualName = MoveGeneratorParameter.Name;

      moveEvaluator.Name = "Move evaluator (placeholder)";
      moveEvaluator.OperatorParameter.ActualName = MoveEvaluatorParameter.Name;

      subScopesCounter.Name = "Increment EvaluatedMoves";
      subScopesCounter.ValueParameter.ActualName = EvaluatedMovesParameter.Name;

      qualityComparator.LeftSideParameter.ActualName = MoveQualityParameter.Name;
      qualityComparator.RightSideParameter.ActualName = QualityParameter.Name;
      qualityComparator.ResultParameter.ActualName = "IsBetter";
      qualityComparator.DampeningParameter.ActualName = "Temperature";

      improvesQualityBranch.ConditionParameter.ActualName = "IsBetter";

      moveMaker.Name = "Move maker (placeholder)";
      moveMaker.OperatorParameter.ActualName = MoveMakerParameter.Name;

      subScopesRemover.RemoveAllSubScopes = true;

      iterationsCounter.Name = "Increment Iterations";
      iterationsCounter.Increment = new IntValue(1);
      iterationsCounter.ValueParameter.ActualName = IterationsParameter.Name;

      iterationsComparator.Name = "Iterations >= MaximumIterations";
      iterationsComparator.LeftSideParameter.ActualName = IterationsParameter.Name;
      iterationsComparator.RightSideParameter.ActualName = MaximumIterationsParameter.Name;
      iterationsComparator.ResultParameter.ActualName = "Terminate";
      iterationsComparator.Comparison.Value = ComparisonType.GreaterOrEqual;

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      iterationsTermination.Name = "Iterations termination condition";
      iterationsTermination.ConditionParameter.ActualName = "Terminate";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = temperatureInitializer;
      temperatureInitializer.Successor = resultsCollector1;
      resultsCollector1.Successor = subScopesProcessor0;
      subScopesProcessor0.Operators.Add(analyzer1);
      subScopesProcessor0.Successor = sssp;
      analyzer1.Successor = null;
      sssp.Operators.Add(resultsCollector);
      sssp.Successor = annealingOperator;
      resultsCollector.Successor = null;
      annealingOperator.Successor = mainProcessor;
      mainProcessor.Operator = moveGenerator;
      mainProcessor.Successor = iterationsCounter;
      moveGenerator.Successor = moveEvaluationProcessor;
      moveEvaluationProcessor.Operator = moveEvaluator;
      moveEvaluationProcessor.Successor = subScopesCounter;
      moveEvaluator.Successor = qualityComparator;
      qualityComparator.Successor = improvesQualityBranch;
      improvesQualityBranch.TrueBranch = moveMaker;
      improvesQualityBranch.FalseBranch = null;
      improvesQualityBranch.Successor = null;
      moveMaker.Successor = null;
      subScopesCounter.Successor = subScopesRemover;
      subScopesRemover.Successor = null;
      iterationsCounter.Successor = iterationsComparator;
      iterationsComparator.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(analyzer2);
      subScopesProcessor1.Successor = iterationsTermination;
      iterationsTermination.TrueBranch = null;
      iterationsTermination.FalseBranch = annealingOperator;
      #endregion
    }
예제 #14
0
 private Assigner(Assigner original, Cloner cloner)
   : base(original, cloner) {
 }
예제 #15
0
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new LookupParameter<DoubleValue>("MoveQuality", "The value which represents the quality of a move."));
      Parameters.Add(new LookupParameter<BoolValue>("MoveTabu", "The value that indicates if a move is tabu or not."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<IntValue>("TabuTenure", "The length of the tabu list, and also means the number of iterations a move is kept tabu"));

      Parameters.Add(new ValueLookupParameter<IOperator>("MoveGenerator", "The operator that generates the moves."));
      Parameters.Add(new ValueLookupParameter<IOperator>("MoveMaker", "The operator that performs a move and updates the quality."));
      Parameters.Add(new ValueLookupParameter<IOperator>("MoveEvaluator", "The operator that evaluates a move."));
      Parameters.Add(new ValueLookupParameter<IOperator>("TabuChecker", "The operator that checks whether a move is tabu."));
      Parameters.Add(new ValueLookupParameter<IOperator>("TabuMaker", "The operator that declares a move tabu."));

      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze the solution and moves."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedMoves", "The number of evaluated moves."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      SubScopesProcessor subScopesProcessor0 = new SubScopesProcessor();
      Assigner bestQualityInitializer = new Assigner();
      Placeholder analyzer1 = new Placeholder();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      SubScopesProcessor solutionProcessor = new SubScopesProcessor();
      Placeholder moveGenerator = new Placeholder();
      UniformSubScopesProcessor moveEvaluationProcessor = new UniformSubScopesProcessor();
      Placeholder moveEvaluator = new Placeholder();
      Placeholder tabuChecker = new Placeholder();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      SubScopesSorter moveQualitySorter = new SubScopesSorter();
      TabuSelector tabuSelector = new TabuSelector();
      ConditionalBranch emptyNeighborhoodBranch1 = new ConditionalBranch();
      SubScopesProcessor moveMakingProcessor = new SubScopesProcessor();
      UniformSubScopesProcessor selectedMoveMakingProcesor = new UniformSubScopesProcessor();
      Placeholder tabuMaker = new Placeholder();
      Placeholder moveMaker = new Placeholder();
      MergingReducer mergingReducer = new MergingReducer();
      Placeholder analyzer2 = new Placeholder();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      ConditionalBranch emptyNeighborhoodBranch2 = new ConditionalBranch();
      BestQualityMemorizer bestQualityUpdater = new BestQualityMemorizer();
      IntCounter iterationsCounter = new IntCounter();
      Comparator iterationsComparator = new Comparator();
      ConditionalBranch iterationsTermination = new ConditionalBranch();

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Iterations", new IntValue(0))); // Class TabuSearch expects this to be called Iterations
      variableCreator.CollectedValues.Add(new ValueParameter<BoolValue>("EmptyNeighborhood", new BoolValue(false)));
      variableCreator.CollectedValues.Add(new ValueParameter<ItemList<IItem>>("TabuList", new ItemList<IItem>()));
      variableCreator.CollectedValues.Add(new ValueParameter<VariableCollection>("Memories", new VariableCollection()));
      variableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("BestQuality", new DoubleValue(0)));

      bestQualityInitializer.Name = "Initialize BestQuality";
      bestQualityInitializer.LeftSideParameter.ActualName = "BestQuality";
      bestQualityInitializer.RightSideParameter.ActualName = QualityParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      resultsCollector1.CopyValue = new BoolValue(false);
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Iterations"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Best Quality", null, "BestQuality"));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      moveGenerator.Name = "MoveGenerator (placeholder)";
      moveGenerator.OperatorParameter.ActualName = MoveGeneratorParameter.Name;

      moveEvaluationProcessor.Parallel = new BoolValue(true);

      moveEvaluator.Name = "MoveEvaluator (placeholder)";
      moveEvaluator.OperatorParameter.ActualName = MoveEvaluatorParameter.Name;

      tabuChecker.Name = "TabuChecker (placeholder)";
      tabuChecker.OperatorParameter.ActualName = TabuCheckerParameter.Name;

      subScopesCounter.Name = "Increment EvaluatedMoves";
      subScopesCounter.ValueParameter.ActualName = EvaluatedMovesParameter.Name;

      moveQualitySorter.DescendingParameter.ActualName = MaximizationParameter.Name;
      moveQualitySorter.ValueParameter.ActualName = MoveQualityParameter.Name;

      tabuSelector.AspirationParameter.Value = new BoolValue(true);
      tabuSelector.BestQualityParameter.ActualName = "BestQuality";
      tabuSelector.CopySelected = new BoolValue(false);
      tabuSelector.EmptyNeighborhoodParameter.ActualName = "EmptyNeighborhood";
      tabuSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      tabuSelector.MoveQualityParameter.ActualName = MoveQualityParameter.Name;
      tabuSelector.MoveTabuParameter.ActualName = MoveTabuParameter.Name;

      moveMakingProcessor.Name = "MoveMaking processor (UniformSubScopesProcessor)";

      emptyNeighborhoodBranch1.Name = "Neighborhood empty?";
      emptyNeighborhoodBranch1.ConditionParameter.ActualName = "EmptyNeighborhood";

      tabuMaker.Name = "TabuMaker (placeholder)";
      tabuMaker.OperatorParameter.ActualName = TabuMakerParameter.Name;

      moveMaker.Name = "MoveMaker (placeholder)";
      moveMaker.OperatorParameter.ActualName = MoveMakerParameter.Name;

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      subScopesRemover.RemoveAllSubScopes = true;

      bestQualityUpdater.Name = "Update BestQuality";
      bestQualityUpdater.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestQualityUpdater.QualityParameter.ActualName = QualityParameter.Name;
      bestQualityUpdater.BestQualityParameter.ActualName = "BestQuality";

      iterationsCounter.Name = "Iterations Counter";
      iterationsCounter.Increment = new IntValue(1);
      iterationsCounter.ValueParameter.ActualName = "Iterations";

      iterationsComparator.Name = "Iterations >= MaximumIterations";
      iterationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      iterationsComparator.LeftSideParameter.ActualName = "Iterations";
      iterationsComparator.RightSideParameter.ActualName = MaximumIterationsParameter.Name;
      iterationsComparator.ResultParameter.ActualName = "Terminate";

      emptyNeighborhoodBranch2.Name = "Neighborhood empty?";
      emptyNeighborhoodBranch2.ConditionParameter.ActualName = "EmptyNeighborhood";

      iterationsTermination.Name = "Iterations Termination Condition";
      iterationsTermination.ConditionParameter.ActualName = "Terminate";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = subScopesProcessor0;
      subScopesProcessor0.Operators.Add(bestQualityInitializer);
      subScopesProcessor0.Successor = resultsCollector1;
      bestQualityInitializer.Successor = analyzer1;
      analyzer1.Successor = null;
      resultsCollector1.Successor = solutionProcessor;
      solutionProcessor.Operators.Add(moveGenerator);
      solutionProcessor.Successor = iterationsCounter;
      moveGenerator.Successor = moveEvaluationProcessor;
      moveEvaluationProcessor.Operator = moveEvaluator;
      moveEvaluationProcessor.Successor = subScopesCounter;
      moveEvaluator.Successor = tabuChecker;
      tabuChecker.Successor = null;
      subScopesCounter.Successor = moveQualitySorter;
      moveQualitySorter.Successor = tabuSelector;
      tabuSelector.Successor = emptyNeighborhoodBranch1;
      emptyNeighborhoodBranch1.FalseBranch = moveMakingProcessor;
      emptyNeighborhoodBranch1.TrueBranch = null;
      emptyNeighborhoodBranch1.Successor = subScopesRemover;
      moveMakingProcessor.Operators.Add(new EmptyOperator());
      moveMakingProcessor.Operators.Add(selectedMoveMakingProcesor);
      moveMakingProcessor.Successor = mergingReducer;
      selectedMoveMakingProcesor.Operator = tabuMaker;
      selectedMoveMakingProcesor.Successor = null;
      tabuMaker.Successor = moveMaker;
      moveMaker.Successor = null;
      mergingReducer.Successor = analyzer2;
      analyzer2.Successor = null;
      subScopesRemover.Successor = null;
      iterationsCounter.Successor = iterationsComparator;
      iterationsComparator.Successor = emptyNeighborhoodBranch2;
      emptyNeighborhoodBranch2.TrueBranch = null;
      emptyNeighborhoodBranch2.FalseBranch = iterationsTermination;
      emptyNeighborhoodBranch2.Successor = null;
      iterationsTermination.TrueBranch = null;
      iterationsTermination.FalseBranch = solutionProcessor;
      #endregion
    }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new LookupParameter<IntValue>("Iterations", "The iterations to count."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze the solution."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated solutions."));
      Parameters.Add(new ValueLookupParameter<ILocalImprovementOperator>("LocalImprovement", "The local improvement operation."));
      Parameters.Add(new ValueLookupParameter<IMultiNeighborhoodShakingOperator>("ShakingOperator", "The shaking operation."));
      Parameters.Add(new LookupParameter<IntValue>("CurrentNeighborhoodIndex", "The index of the current shaking operation that should be applied."));
      Parameters.Add(new LookupParameter<IntValue>("NeighborhoodCount", "The number of neighborhood operators used for shaking."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      SubScopesProcessor subScopesProcessor0 = new SubScopesProcessor();
      Assigner bestQualityInitializer = new Assigner();
      Placeholder analyzer1 = new Placeholder();
      ResultsCollector resultsCollector1 = new ResultsCollector();

      CombinedOperator iteration = new CombinedOperator();
      Assigner iterationInit = new Assigner();

      SubScopesCloner createChild = new SubScopesCloner();
      SubScopesProcessor childProcessor = new SubScopesProcessor();

      Assigner qualityAssigner = new Assigner();
      Placeholder shaking = new Placeholder();
      Placeholder localImprovement = new Placeholder();
      Placeholder evaluator = new Placeholder();
      IntCounter evalCounter = new IntCounter();

      QualityComparator qualityComparator = new QualityComparator();
      ConditionalBranch improvesQualityBranch = new ConditionalBranch();

      Assigner bestQualityUpdater = new Assigner();

      BestSelector bestSelector = new BestSelector();
      RightReducer rightReducer = new RightReducer();

      IntCounter indexCounter = new IntCounter();
      Assigner indexResetter = new Assigner();

      Placeholder analyzer2 = new Placeholder();

      Comparator indexComparator = new Comparator();
      ConditionalBranch indexTermination = new ConditionalBranch();

      IntCounter iterationsCounter = new IntCounter();
      Comparator iterationsComparator = new Comparator();
      ConditionalBranch iterationsTermination = new ConditionalBranch();

      variableCreator.CollectedValues.Add(new ValueParameter<BoolValue>("IsBetter", new BoolValue(false)));
      variableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("BestQuality", new DoubleValue(0)));

      bestQualityInitializer.Name = "Initialize BestQuality";
      bestQualityInitializer.LeftSideParameter.ActualName = "BestQuality";
      bestQualityInitializer.RightSideParameter.ActualName = QualityParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      resultsCollector1.CopyValue = new BoolValue(false);
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Best Quality", null, "BestQuality"));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      iteration.Name = "MainLoop Body";

      iterationInit.Name = "Init k = 0";
      iterationInit.LeftSideParameter.ActualName = CurrentNeighborhoodIndexParameter.Name;
      iterationInit.RightSideParameter.Value = new IntValue(0);

      createChild.Name = "Clone solution";

      qualityAssigner.Name = "Assign quality";
      qualityAssigner.LeftSideParameter.ActualName = "OriginalQuality";
      qualityAssigner.RightSideParameter.ActualName = QualityParameter.Name;

      shaking.Name = "Shaking operator (placeholder)";
      shaking.OperatorParameter.ActualName = ShakingOperatorParameter.Name;

      localImprovement.Name = "Local improvement operator (placeholder)";
      localImprovement.OperatorParameter.ActualName = LocalImprovementParameter.Name;

      evaluator.Name = "Evaluation operator (placeholder)";
      evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;

      evalCounter.Name = "Count evaluations";
      evalCounter.Increment.Value = 1;
      evalCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.ActualName;

      qualityComparator.LeftSideParameter.ActualName = QualityParameter.Name;
      qualityComparator.RightSideParameter.ActualName = "OriginalQuality";
      qualityComparator.ResultParameter.ActualName = "IsBetter";

      improvesQualityBranch.ConditionParameter.ActualName = "IsBetter";

      bestQualityUpdater.Name = "Update BestQuality";
      bestQualityUpdater.LeftSideParameter.ActualName = "BestQuality";
      bestQualityUpdater.RightSideParameter.ActualName = QualityParameter.Name;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.Value = new IntValue(1);
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;

      indexCounter.Name = "Count neighborhood index";
      indexCounter.Increment.Value = 1;
      indexCounter.ValueParameter.ActualName = CurrentNeighborhoodIndexParameter.Name;

      indexResetter.Name = "Reset neighborhood index";
      indexResetter.LeftSideParameter.ActualName = CurrentNeighborhoodIndexParameter.Name;
      indexResetter.RightSideParameter.Value = new IntValue(0);

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      iterationsCounter.Name = "Iterations Counter";
      iterationsCounter.Increment = new IntValue(1);
      iterationsCounter.ValueParameter.ActualName = IterationsParameter.Name;

      iterationsComparator.Name = "Iterations >= MaximumIterations";
      iterationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      iterationsComparator.LeftSideParameter.ActualName = IterationsParameter.Name;
      iterationsComparator.RightSideParameter.ActualName = MaximumIterationsParameter.Name;
      iterationsComparator.ResultParameter.ActualName = "Terminate";

      iterationsTermination.Name = "Iterations Termination Condition";
      iterationsTermination.ConditionParameter.ActualName = "Terminate";

      indexComparator.Name = "k < k_max (index condition)";
      indexComparator.LeftSideParameter.ActualName = CurrentNeighborhoodIndexParameter.Name;
      indexComparator.RightSideParameter.ActualName = NeighborhoodCountParameter.Name;
      indexComparator.Comparison = new Comparison(ComparisonType.Less);
      indexComparator.ResultParameter.ActualName = "ContinueIteration";

      indexTermination.Name = "Index Termination Condition";
      indexTermination.ConditionParameter.ActualName = "ContinueIteration";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = subScopesProcessor0;
      subScopesProcessor0.Operators.Add(bestQualityInitializer);
      subScopesProcessor0.Successor = analyzer1;
      analyzer1.Successor = resultsCollector1;
      /////////
      resultsCollector1.Successor = iteration;

      iteration.OperatorGraph.InitialOperator = iterationInit;
      iteration.Successor = iterationsCounter;
      iterationInit.Successor = createChild;

      createChild.Successor = childProcessor;
      childProcessor.Operators.Add(new EmptyOperator());
      childProcessor.Operators.Add(qualityAssigner);
      childProcessor.Successor = bestSelector;
      /////////
      qualityAssigner.Successor = shaking;
      shaking.Successor = evaluator;
      evaluator.Successor = evalCounter;
      evalCounter.Successor = localImprovement;
      localImprovement.Successor = qualityComparator;
      qualityComparator.Successor = improvesQualityBranch;
      improvesQualityBranch.TrueBranch = bestQualityUpdater;
      improvesQualityBranch.FalseBranch = indexCounter;

      bestQualityUpdater.Successor = indexResetter;
      indexResetter.Successor = null;

      indexCounter.Successor = null;
      /////////
      bestSelector.Successor = rightReducer;
      rightReducer.Successor = analyzer2;
      analyzer2.Successor = indexComparator;
      indexComparator.Successor = indexTermination;
      indexTermination.TrueBranch = createChild;
      indexTermination.FalseBranch = null;

      iterationsCounter.Successor = iterationsComparator;
      iterationsComparator.Successor = iterationsTermination;
      iterationsTermination.TrueBranch = null;
      iterationsTermination.FalseBranch = iteration;
      #endregion
    }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved."));
      Parameters.Add(new LookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactorStart", "The initial value for the comparison factor."));
      Parameters.Add(new ValueLookupParameter<IOperator>("ComparisonFactorModifier", "The operator used to modify the comparison factor."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      Assigner comparisonFactorInitializer = new Assigner();
      Placeholder analyzer1 = new Placeholder();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      OffspringSelectionGeneticAlgorithmMainOperator mainOperator = new OffspringSelectionGeneticAlgorithmMainOperator();
      IntCounter generationsCounter = new IntCounter();
      Comparator maxGenerationsComparator = new Comparator();
      Comparator maxSelectionPressureComparator = new Comparator();
      Comparator maxEvaluatedSolutionsComparator = new Comparator();
      Placeholder comparisonFactorModifier = new Placeholder();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch conditionalBranch1 = new ConditionalBranch();
      ConditionalBranch conditionalBranch2 = new ConditionalBranch();
      ConditionalBranch conditionalBranch3 = new ConditionalBranch();

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class OffspringSelectionGeneticAlgorithm expects this to be called Generations
      variableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("SelectionPressure", new DoubleValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("CurrentSuccessRatio", new DoubleValue(0)));

      comparisonFactorInitializer.Name = "Initialize ComparisonFactor (placeholder)";
      comparisonFactorInitializer.LeftSideParameter.ActualName = ComparisonFactorParameter.Name;
      comparisonFactorInitializer.RightSideParameter.ActualName = ComparisonFactorStartParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      resultsCollector1.CopyValue = new BoolValue(false);
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Comparison Factor", null, ComparisonFactorParameter.Name));
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio"));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      mainOperator.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      mainOperator.CrossoverParameter.ActualName = CrossoverParameter.Name;
      mainOperator.CurrentSuccessRatioParameter.ActualName = "CurrentSuccessRatio";
      mainOperator.ElitesParameter.ActualName = ElitesParameter.Name;
      mainOperator.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
      mainOperator.EvaluatedSolutionsParameter.ActualName = EvaluatedSolutionsParameter.Name;
      mainOperator.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
      mainOperator.MaximizationParameter.ActualName = MaximizationParameter.Name;
      mainOperator.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
      mainOperator.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      mainOperator.MutatorParameter.ActualName = MutatorParameter.Name;
      mainOperator.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
      mainOperator.QualityParameter.ActualName = QualityParameter.Name;
      mainOperator.RandomParameter.ActualName = RandomParameter.Name;
      mainOperator.SelectionPressureParameter.ActualName = "SelectionPressure";
      mainOperator.SelectorParameter.ActualName = SelectorParameter.Name;
      mainOperator.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
      mainOperator.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;

      generationsCounter.Increment = new IntValue(1);
      generationsCounter.ValueParameter.ActualName = "Generations";

      maxGenerationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maxGenerationsComparator.LeftSideParameter.ActualName = "Generations";
      maxGenerationsComparator.ResultParameter.ActualName = "TerminateMaximumGenerations";
      maxGenerationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;

      maxSelectionPressureComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maxSelectionPressureComparator.LeftSideParameter.ActualName = "SelectionPressure";
      maxSelectionPressureComparator.ResultParameter.ActualName = "TerminateSelectionPressure";
      maxSelectionPressureComparator.RightSideParameter.ActualName = MaximumSelectionPressureParameter.Name;

      maxEvaluatedSolutionsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maxEvaluatedSolutionsComparator.LeftSideParameter.ActualName = EvaluatedSolutionsParameter.Name;
      maxEvaluatedSolutionsComparator.ResultParameter.ActualName = "TerminateEvaluatedSolutions";
      maxEvaluatedSolutionsComparator.RightSideParameter.ActualName = "MaximumEvaluatedSolutions";

      comparisonFactorModifier.Name = "Update ComparisonFactor (placeholder)";
      comparisonFactorModifier.OperatorParameter.ActualName = ComparisonFactorModifierParameter.Name;

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      conditionalBranch1.Name = "MaximumSelectionPressure reached?";
      conditionalBranch1.ConditionParameter.ActualName = "TerminateSelectionPressure";

      conditionalBranch2.Name = "MaximumGenerations reached?";
      conditionalBranch2.ConditionParameter.ActualName = "TerminateMaximumGenerations";

      conditionalBranch3.Name = "MaximumEvaluatedSolutions reached?";
      conditionalBranch3.ConditionParameter.ActualName = "TerminateEvaluatedSolutions";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = comparisonFactorInitializer;
      comparisonFactorInitializer.Successor = analyzer1;
      analyzer1.Successor = resultsCollector1;
      resultsCollector1.Successor = mainOperator;
      mainOperator.Successor = generationsCounter;
      generationsCounter.Successor = maxGenerationsComparator;
      maxGenerationsComparator.Successor = maxSelectionPressureComparator;
      maxSelectionPressureComparator.Successor = maxEvaluatedSolutionsComparator;
      maxEvaluatedSolutionsComparator.Successor = comparisonFactorModifier;
      comparisonFactorModifier.Successor = analyzer2;
      analyzer2.Successor = conditionalBranch1;
      conditionalBranch1.FalseBranch = conditionalBranch2;
      conditionalBranch1.TrueBranch = null;
      conditionalBranch1.Successor = null;
      conditionalBranch2.FalseBranch = conditionalBranch3;
      conditionalBranch2.TrueBranch = null;
      conditionalBranch2.Successor = null;
      conditionalBranch3.FalseBranch = mainOperator;
      conditionalBranch3.TrueBranch = null;
      conditionalBranch3.Successor = null;
      #endregion
    }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IMultiAnalyzer>("Analyzer", "The analyzer used to analyze each iteration."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ValueLookupParameter<IEvaluator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ExecutePathRelinking", "True if path relinking should be executed instead of crossover, otherwise false."));
      Parameters.Add(new ValueLookupParameter<IImprovementOperator>("Improver", "The operator used to improve solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Iterations", "The number of iterations performed."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of iterations which should be processed."));
      Parameters.Add(new ValueLookupParameter<IntValue>("NumberOfHighQualitySolutions", "The number of high quality solutions in the reference set."));
      Parameters.Add(new ValueLookupParameter<IPathRelinker>("PathRelinker", "The operator used to execute path relinking."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population of solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("ReferenceSetSize", "The size of the reference set."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("Quality", "This parameter is used for name translation only."));
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<ISolutionSimilarityCalculator>("SimilarityCalculator", "The operator used to calculate the similarity between two solutions."));
      #endregion

      #region Create operators
      Placeholder analyzer = new Placeholder();
      Assigner assigner1 = new Assigner();
      Assigner assigner2 = new Assigner();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      Placeholder crossover = new Placeholder();
      Comparator iterationsChecker = new Comparator();
      IntCounter iterationsCounter = new IntCounter();
      MergingReducer mergingReducer = new MergingReducer();
      ConditionalBranch executePathRelinkingBranch = new ConditionalBranch();
      ConditionalBranch newSolutionsBranch = new ConditionalBranch();
      OffspringProcessor offspringProcessor = new OffspringProcessor();
      Placeholder pathRelinker = new Placeholder();
      PopulationRebuildMethod populationRebuildMethod = new PopulationRebuildMethod();
      ReferenceSetUpdateMethod referenceSetUpdateMethod = new ReferenceSetUpdateMethod();
      ResultsCollector resultsCollector = new ResultsCollector();
      RightSelector rightSelector = new RightSelector();
      Placeholder solutionEvaluator1 = new Placeholder();
      Placeholder solutionEvaluator2 = new Placeholder();
      Placeholder solutionImprover1 = new Placeholder();
      Placeholder solutionImprover2 = new Placeholder();
      SolutionPoolUpdateMethod solutionPoolUpdateMethod = new SolutionPoolUpdateMethod();
      SolutionsCreator solutionsCreator = new SolutionsCreator();
      DataReducer dataReducer1 = new DataReducer();
      DataReducer dataReducer2 = new DataReducer();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
      SubScopesProcessor subScopesProcessor3 = new SubScopesProcessor();
      SubScopesProcessor subScopesProcessor4 = new SubScopesProcessor();
      ConditionalBranch terminateBranch = new ConditionalBranch();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
      VariableCreator variableCreator = new VariableCreator();
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>(IterationsParameter.Name, new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<BoolValue>("NewSolutions", new BoolValue(false)));
      variableCreator.Successor = resultsCollector;

      resultsCollector.CopyValue = new BoolValue(false);
      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>(IterationsParameter.Name));
      resultsCollector.ResultsParameter.ActualName = ResultsParameter.Name;
      resultsCollector.Successor = iterationsChecker;

      iterationsChecker.Name = "IterationsChecker";
      iterationsChecker.Comparison.Value = ComparisonType.GreaterOrEqual;
      iterationsChecker.LeftSideParameter.ActualName = IterationsParameter.Name;
      iterationsChecker.RightSideParameter.ActualName = MaximumIterationsParameter.Name;
      iterationsChecker.ResultParameter.ActualName = "Terminate";
      iterationsChecker.Successor = terminateBranch;

      terminateBranch.Name = "TerminateChecker";
      terminateBranch.ConditionParameter.ActualName = "Terminate";
      terminateBranch.FalseBranch = referenceSetUpdateMethod;

      referenceSetUpdateMethod.Successor = assigner1;

      assigner1.Name = "NewSolutions = true";
      assigner1.LeftSideParameter.ActualName = "NewSolutions";
      assigner1.RightSideParameter.Value = new BoolValue(true);
      assigner1.Successor = subScopesProcessor1;

      subScopesProcessor1.DepthParameter.Value = new IntValue(1);
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(childrenCreator);
      subScopesProcessor1.Successor = newSolutionsBranch;

      childrenCreator.Name = "SubsetGenerator";
      childrenCreator.ParentsPerChildParameter.Value = new IntValue(2);
      childrenCreator.Successor = assigner2;

      assigner2.Name = "NewSolutions = false";
      assigner2.LeftSideParameter.ActualName = "NewSolutions";
      assigner2.RightSideParameter.Value = new BoolValue(false);
      assigner2.Successor = uniformSubScopesProcessor1;

      uniformSubScopesProcessor1.DepthParameter.Value = new IntValue(1);
      uniformSubScopesProcessor1.Operator = executePathRelinkingBranch;
      uniformSubScopesProcessor1.Successor = solutionPoolUpdateMethod;

      executePathRelinkingBranch.Name = "ExecutePathRelinkingChecker";
      executePathRelinkingBranch.ConditionParameter.ActualName = ExecutePathRelinkingParameter.ActualName;
      executePathRelinkingBranch.TrueBranch = pathRelinker;
      executePathRelinkingBranch.FalseBranch = crossover;

      pathRelinker.Name = "PathRelinker";
      pathRelinker.OperatorParameter.ActualName = PathRelinkerParameter.Name;
      pathRelinker.Successor = rightSelector;

      crossover.Name = "Crossover";
      crossover.OperatorParameter.ActualName = CrossoverParameter.Name;
      crossover.Successor = offspringProcessor;

      offspringProcessor.Successor = rightSelector;

      rightSelector.NumberOfSelectedSubScopesParameter.Value = new IntValue(1);
      rightSelector.CopySelected = new BoolValue(false);
      rightSelector.Successor = subScopesProcessor2;

      subScopesProcessor2.DepthParameter.Value = new IntValue(1);
      subScopesProcessor2.Operators.Add(new EmptyOperator());
      subScopesProcessor2.Operators.Add(uniformSubScopesProcessor2);
      subScopesProcessor2.Successor = mergingReducer;

      uniformSubScopesProcessor2.DepthParameter.Value = new IntValue(2);
      uniformSubScopesProcessor2.Operator = solutionImprover1;
      uniformSubScopesProcessor2.ParallelParameter.Value = new BoolValue(true);
      uniformSubScopesProcessor2.Successor = subScopesProcessor4;

      solutionImprover1.Name = "SolutionImprover";
      solutionImprover1.OperatorParameter.ActualName = ImproverParameter.Name;
      solutionImprover1.Successor = solutionEvaluator1;

      solutionEvaluator1.Name = "SolutionEvaluator";
      solutionEvaluator1.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesProcessor4.Operators.Add(dataReducer1);

      dataReducer1.Name = "Increment EvaluatedSolutions";
      dataReducer1.ParameterToReduce.ActualName = "LocalEvaluatedSolutions";
      dataReducer1.TargetParameter.ActualName = EvaluatedSolutionsParameter.Name;
      dataReducer1.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum);
      dataReducer1.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum);

      solutionPoolUpdateMethod.QualityParameter.ActualName = QualityParameter.ActualName;
      solutionPoolUpdateMethod.Successor = analyzer;

      analyzer.Name = "Analyzer";
      analyzer.OperatorParameter.ActualName = AnalyzerParameter.Name;

      newSolutionsBranch.Name = "NewSolutionsChecker";
      newSolutionsBranch.ConditionParameter.ActualName = "NewSolutions";
      newSolutionsBranch.TrueBranch = subScopesProcessor1;
      newSolutionsBranch.FalseBranch = populationRebuildMethod;

      populationRebuildMethod.QualityParameter.ActualName = QualityParameter.ActualName;
      populationRebuildMethod.Successor = subScopesProcessor3;

      subScopesProcessor3.DepthParameter.Value = new IntValue(1);
      subScopesProcessor3.Operators.Add(solutionsCreator);
      subScopesProcessor3.Operators.Add(new EmptyOperator());
      subScopesProcessor3.Successor = iterationsCounter;

      solutionsCreator.Name = "DiversificationGenerationMethod";
      solutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
      solutionsCreator.Successor = uniformSubScopesProcessor3;

      uniformSubScopesProcessor3.DepthParameter.Value = new IntValue(1);
      uniformSubScopesProcessor3.Operator = solutionImprover2;
      uniformSubScopesProcessor3.ParallelParameter.Value = new BoolValue(true);
      uniformSubScopesProcessor3.Successor = dataReducer2;

      solutionImprover2.Name = "SolutionImprover";
      solutionImprover2.OperatorParameter.ActualName = ImproverParameter.Name;
      solutionImprover2.Successor = solutionEvaluator2;

      solutionEvaluator2.Name = "SolutionEvaluator";
      solutionEvaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;

      dataReducer2.Name = "Increment EvaluatedSolutions";
      dataReducer2.ParameterToReduce.ActualName = "LocalEvaluatedSolutions";
      dataReducer2.TargetParameter.ActualName = EvaluatedSolutionsParameter.Name;
      dataReducer2.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum);
      dataReducer2.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum);

      iterationsCounter.Name = "IterationCounter";
      iterationsCounter.IncrementParameter.Value = new IntValue(1);
      iterationsCounter.ValueParameter.ActualName = IterationsParameter.Name;
      iterationsCounter.Successor = resultsCollector;
      #endregion
    }