public GaussianProcessLeaf() { var gp = new GaussianProcessRegression(); gp.CovarianceFunctionParameter.Value = new CovarianceRationalQuadraticIso(); gp.MeanFunctionParameter.Value = new MeanLinear(); Parameters.Add(new FixedValueParameter <IntValue>(TriesParameterName, "Number of restarts (default = 10)", new IntValue(10))); Parameters.Add(new ValueParameter <GaussianProcessRegression>(RegressionParameterName, "The algorithm creating Gaussian process models", gp)); }
private GaussianProcessRegression CreateGaussianProcessRegressionSample() { var gpr = new GaussianProcessRegression(); var provider = new VariousInstanceProvider(); var instance = provider.GetDataDescriptors().Where(x => x.Name.Contains("Spatial co-evolution")).Single(); var regProblem = new RegressionProblem(); regProblem.Load(provider.LoadData(instance)); #region Algorithm Configuration gpr.Name = "Gaussian Process Regression"; gpr.Description = "A Gaussian process regression algorithm which solves the spatial co-evolution benchmark problem"; gpr.Problem = regProblem; gpr.CovarianceFunction = new CovarianceSquaredExponentialIso(); gpr.MeanFunction = new MeanConst(); gpr.MinimizationIterations = 20; gpr.Seed = 0; gpr.SetSeedRandomly = true; #endregion gpr.Engine = new ParallelEngine.ParallelEngine(); return gpr; }
private GaussianProcessRegression(GaussianProcessRegression original, Cloner cloner) : base(original, cloner) { RegisterEventHandlers(); }