public GaussianProcessLeaf()
        {
            var gp = new GaussianProcessRegression();

            gp.CovarianceFunctionParameter.Value = new CovarianceRationalQuadraticIso();
            gp.MeanFunctionParameter.Value       = new MeanLinear();

            Parameters.Add(new FixedValueParameter <IntValue>(TriesParameterName, "Number of restarts (default = 10)", new IntValue(10)));
            Parameters.Add(new ValueParameter <GaussianProcessRegression>(RegressionParameterName, "The algorithm creating Gaussian process models", gp));
        }
    private GaussianProcessRegression CreateGaussianProcessRegressionSample() {
      var gpr = new GaussianProcessRegression();
      var provider = new VariousInstanceProvider();
      var instance = provider.GetDataDescriptors().Where(x => x.Name.Contains("Spatial co-evolution")).Single();
      var regProblem = new RegressionProblem();
      regProblem.Load(provider.LoadData(instance));

      #region Algorithm Configuration
      gpr.Name = "Gaussian Process Regression";
      gpr.Description = "A Gaussian process regression algorithm which solves the spatial co-evolution benchmark problem";
      gpr.Problem = regProblem;

      gpr.CovarianceFunction = new CovarianceSquaredExponentialIso();
      gpr.MeanFunction = new MeanConst();
      gpr.MinimizationIterations = 20;
      gpr.Seed = 0;
      gpr.SetSeedRandomly = true;
      #endregion

      gpr.Engine = new ParallelEngine.ParallelEngine();
      return gpr;
    }
 private GaussianProcessRegression(GaussianProcessRegression original, Cloner cloner)
   : base(original, cloner) {
   RegisterEventHandlers();
 }
 private GaussianProcessRegression(GaussianProcessRegression original, Cloner cloner)
     : base(original, cloner)
 {
     RegisterEventHandlers();
 }