private Dictionary <object, BestSoFarWithTies <double, Prediction> > ForEachKeyFindTheBestResults(
            ShowBy showBy,
            string inputPeptide, MerLength merLength, int?dOfCenter, HlaSetSpecification hlaSetSpecification, string hlaOrSupertypeOrNull, bool modelOnly)
        {
            Dictionary <object, BestSoFarWithTies <double, Prediction> > keyToBest = new Dictionary <object, BestSoFarWithTies <double, Prediction> >();

            foreach (Prediction prediction in PredictionEnumeration(inputPeptide, merLength, dOfCenter, hlaSetSpecification, hlaOrSupertypeOrNull, modelOnly))
            {
                object key = prediction.GroupByKey(showBy); //!!!would be nice if this were typed, rather than just using 'string'
                BestSoFarWithTies <double, Prediction> bestSoFarWithTies = SpecialFunctions.GetValueOrDefault(keyToBest, key, BestSoFarWithTies <double, Prediction> .GetInstance(SpecialFunctions.DoubleGreaterThan));

                bestSoFarWithTies.Compare(prediction.WeightOfEvidence, prediction);
            }
            return(keyToBest);
        }
        private Set <Hla> HlaSet(HlaSetSpecification hlaSetSpecification, string hlaOrSupertypeOrNull)
        {
            Set <Hla> hlaSet = hlaSetSpecification.HlaSet(hlaOrSupertypeOrNull, _hlaSet, _supertypeMap);

            return(hlaSet);
        }
        ////!!! this could be moved into a class
        //private object CreateKey(Prediction prediction, Best display)
        //{
        //    switch (display)
        //    {
        //        case Best.overall:
        //            return "best";
        //        case Best.perHla:
        //            return prediction.Hla;
        //        case Best.perPrediction:
        //            return prediction;
        //        case  Best.perLength:
        //            return prediction.K;
        //        case Best.perHlaAndLength:
        //            return new Pair<Hla, int>(prediction.Hla, prediction.K);
        //        default:
        //            SpecialFunctions.CheckCondition(false, "Don't know how to display " + display.ToString());
        //            return null;
        //    }
        //}

        /// <summary>
        ///  HlaSetSpecification class choices:
        ///        HlaSetSpecification.Singleton – Means that an Hla will be given and it is the only hla to be considered
        ///        HlaSetSpecification.Supertype – Means that a supertype will be given and it’s hlas should be considered
        ///        HlaSetSpecification.All – Means to consider all known hlas
        /// </summary>
        /// <param name="inputPeptide">a string of amino acids</param>
        /// <param name="merLength">A value from the MerLength enum, which includes MerLength.scan, MerLength.given, MerLength.Eight, etc</param>
        /// <param name="hlaSetSpecification">A predefined HlaSetSpecification class.</param>
        /// <param name="hlaOrSupertypeOrNull">The hla or supertype required by HlaSetSpecification, or null for HlaSetSpecification.All</param>
        /// <param name="modelOnly">If should report the probability from the model, even when the epitope is on a source list.</param>
        /// <returns></returns>
        public IEnumerable <Prediction> PredictionEnumeration(string inputPeptide, MerLength merLength, int?dOfCenter, HlaSetSpecification hlaSetSpecification, string hlaOrSupertypeOrNull, bool modelOnly)
        {
            Set <Hla> hlaSet = HlaSet(hlaSetSpecification, hlaOrSupertypeOrNull);

            foreach (int eLength in KEnumeration(merLength, inputPeptide.Length))
            {
                Predictor predictor = KToPredictor[eLength];
                Dictionary <Hla, double> hlaToPriorLogOdds = KToHlaToPriorLogOdds[eLength];

                int necLength = NCLength + eLength + NCLength;
                foreach (int startIndex in StartIndexEnumeration(inputPeptide.Length, necLength, dOfCenter))
                {
                    string peptide = inputPeptide.Substring(startIndex, necLength);
                    NEC    nec     = NEC.GetInstance(peptide, NCLength, eLength, NCLength);
                    foreach (Hla hla in hlaSet)
                    {
                        Hla    hlaForNormalization = HlaForNormalization(hla);
                        double priorLogOddsOfThisLengthAndHla;
                        if (!hlaToPriorLogOdds.TryGetValue(hlaForNormalization, out priorLogOddsOfThisLengthAndHla))
                        {
                            SpecialFunctions.CheckCondition(!RaiseErrorIfNotFoundInNormalizationTable, string.Format("Hla '{0}' (which is '{1}' for the purposes of normalization) and is not found in the normalization table", hla, hlaForNormalization));
                            priorLogOddsOfThisLengthAndHla = SpecialFunctions.LogOdds(RatioOfTrueToFalseTrainingExample);
                        }


                        string source;
                        double originalP       = predictor.Predict(nec, hla, modelOnly, out source);
                        double originalLogOdds = SpecialFunctions.LogOdds(originalP);

                        double     correctedLogOdds     = originalLogOdds + priorLogOddsOfThisLengthAndHla;
                        double     posteriorProbability = SpecialFunctions.InverseLogOdds(correctedLogOdds);
                        double     weightOfEvidence     = correctedLogOdds - SpecialFunctions.LogOdds(RatioOfTrueToFalseTrainingExample);
                        Prediction prediction           = Prediction.GetInstance(inputPeptide, hla, posteriorProbability, weightOfEvidence, nec, startIndex + NCLength + 1, startIndex + NCLength + eLength, source);
                        yield return(prediction);
                    }
                }
            }
        }
        /// <summary>
        /// Returns a list with one item per unique "GroupBy" key (e.g. each hla,  each length, etc). Each item is a list of the predictions
        /// that tie for maximum probability.
        ///
        /// Most of the inputs are the same as for PredictionEnumeration.
        /// </summary>
        /// <param name="showBy"></param>
        /// <param name="inputPeptide"></param>
        /// <param name="merLength"></param>
        /// <param name="hlaSetSpecification"></param>
        /// <param name="hlaOrSupertypeOrNull"></param>
        /// <param name="modelOnly"></param>
        /// <returns></returns>
        public Dictionary <object, List <Prediction> > MaxProbabilityPredictions(ShowBy showBy, string inputPeptide,
                                                                                 MerLength merLength, int?dOfCenter, HlaSetSpecification hlaSetSpecification, string hlaOrSupertypeOrNull, bool modelOnly)
        {
            Dictionary <object, BestSoFarWithTies <double, Prediction> > keyToBest =
                ForEachKeyFindTheBestResults(showBy, inputPeptide, merLength, dOfCenter, hlaSetSpecification, hlaOrSupertypeOrNull, modelOnly);

            Dictionary <object, List <Prediction> > maxProbabilityPredictionsPerKey = FindResultsPerKey(keyToBest);

            return(maxProbabilityPredictionsPerKey);
        }