public void Update_amounts_to_matrix_weighted_average_when_measurement_covariance_commutes_with_estimate_covariance() { var procVector = new Vector(3.141, 2.718, 0.577); var procCovar = SymmetricMatrix.Scalar(dimension: 3, value: 0.321); var procModel = new WienerProcess(procCovar, procVector); OMatrix measMatrix = new Matrix(new double[, ] { { -1, 2, -3 }, { 0.4, -0.5, 6 }, { -0.7, 0.8, -0.9 } }); var measVector = new Vector(3.141, -2.718, 0.577); OSymmetricMatrix measCovar = new SymmetricMatrix(new double[][] { new double[] { 1.0 }, new double[] { 0.5, 0.8 }, new double[] { 0, 0.4, 0.9 } }); var measModel = new AffineStochasticTransformation(measMatrix, measVector, measCovar); OVector initEstimate = new Vector(0.314, 0.718, 2.577); var initCovar = new SymmetricMatrix(new double[][] { new double[] { 7 }, new double[] { 0, 7 }, new double[] { 0, 0, 7 } }); var time = 7.3; var filter = new KalmanFilter(procModel, new StochasticManifoldPoint(initEstimate, initCovar), time); var invMeasMatrix = measMatrix.AsSquare().Inv(); var nativeMeasCovar = measCovar.Conjugate(invMeasMatrix); for (; time < 15; time += 0.8) { OVector measurement = new Vector(0.3 * time, 0.2 * (time + 1), 0.1 * (time - 1)); var nativeMeas = invMeasMatrix * (measurement - measVector); var pred = procModel.Apply(filter.Estimate, time - filter.Time); var expectedEstimate = (pred.Covariance + nativeMeasCovar).Inv() * (nativeMeasCovar * (OVector)pred.Expectation + pred.Covariance * nativeMeas); var expectedCovariance = (pred.Covariance + nativeMeasCovar).Inv() * pred.Covariance * nativeMeasCovar; filter.Update(measModel, measurement, time); ExpectVectorsAreAlmostEqual((OVector)filter.Estimate.Expectation, (OVector)expectedEstimate); ExpectMatricesAreAlmostEqual(filter.Estimate.Covariance, expectedCovariance); } }
public void Apply_Covariance_results_from_base_covariance_by_conjugating_with_numeric_differential() { const double eps = 1e-5; const double tolerance = 1e-7; var diffusionMatrix = new SymmetricMatrix(new double[][] { new double [] { +0.3, }, new double [] { -0.1, +0.4, }, new double [] { +0.1, +0.2, +0.4 } }); var baseProcess = new WienerProcess(diffusionMatrix); var integralProcess = CreateIntegralProcess(baseProcess); var evolution = integralProcess.Apply(_point, _time); var baseResult = (OVector)ExtensionStochasticProcess.GetBaseState(evolution.Expectation); var baseDim = baseProcess.StateSpace.Dimension; var differential = new Matrix(integralProcess.StateSpace.Dimension, baseDim); differential.SetSubmatrix(integralProcess.BaseCoordinateIndex(), 0, Matrix.Id(baseDim)); for (int j = 0; j < baseDim; j++) { var delta = eps * Vector.Basis(j, baseDim); var retarted = baseResult - delta; var advanced = baseResult + delta; var gradient = (ExpectedFiberResult(advanced) - ExpectedFiberResult(retarted)) / (2 * eps); differential.SetSubmatrix(integralProcess.FiberCoordinateIndex(), j, gradient.AsColumn()); } var expectedCovariance = baseProcess.Apply(_basePoint, _time).Covariance.Conjugate(differential); Expect((evolution.Covariance - expectedCovariance).FrobeniusNorm(), Is.LessThan(tolerance)); }