Exemple #1
0
        public void Update_amounts_to_matrix_weighted_average_when_measurement_covariance_commutes_with_estimate_covariance()
        {
            var procVector = new Vector(3.141, 2.718, 0.577);

            var procCovar = SymmetricMatrix.Scalar(dimension: 3, value: 0.321);

            var procModel = new WienerProcess(procCovar, procVector);

            OMatrix measMatrix = new Matrix(new double[, ]
            {
                { -1, 2, -3 },
                { 0.4, -0.5, 6 },
                { -0.7, 0.8, -0.9 }
            });

            var measVector = new Vector(3.141, -2.718, 0.577);

            OSymmetricMatrix measCovar = new SymmetricMatrix(new double[][]
            {
                new double[] { 1.0 },
                new double[] { 0.5, 0.8 },
                new double[] { 0, 0.4, 0.9 }
            });

            var measModel = new AffineStochasticTransformation(measMatrix, measVector, measCovar);

            OVector initEstimate = new Vector(0.314, 0.718, 2.577);

            var initCovar = new SymmetricMatrix(new double[][]
            {
                new double[] { 7 },
                new double[] { 0, 7 },
                new double[] { 0, 0, 7 }
            });

            var time = 7.3;

            var filter = new KalmanFilter(procModel, new StochasticManifoldPoint(initEstimate, initCovar), time);

            var invMeasMatrix = measMatrix.AsSquare().Inv();

            var nativeMeasCovar = measCovar.Conjugate(invMeasMatrix);

            for (; time < 15; time += 0.8)
            {
                OVector measurement = new Vector(0.3 * time, 0.2 * (time + 1), 0.1 * (time - 1));

                var nativeMeas = invMeasMatrix * (measurement - measVector);

                var pred = procModel.Apply(filter.Estimate, time - filter.Time);

                var expectedEstimate   = (pred.Covariance + nativeMeasCovar).Inv() * (nativeMeasCovar * (OVector)pred.Expectation + pred.Covariance * nativeMeas);
                var expectedCovariance = (pred.Covariance + nativeMeasCovar).Inv() * pred.Covariance * nativeMeasCovar;

                filter.Update(measModel, measurement, time);

                ExpectVectorsAreAlmostEqual((OVector)filter.Estimate.Expectation, (OVector)expectedEstimate);
                ExpectMatricesAreAlmostEqual(filter.Estimate.Covariance, expectedCovariance);
            }
        }
Exemple #2
0
        public void Apply_Covariance_results_from_base_covariance_by_conjugating_with_numeric_differential()
        {
            const double eps       = 1e-5;
            const double tolerance = 1e-7;

            var diffusionMatrix = new SymmetricMatrix(new double[][]
            {
                new double [] { +0.3, },
                new double [] { -0.1, +0.4, },
                new double [] { +0.1, +0.2, +0.4 }
            });

            var baseProcess     = new WienerProcess(diffusionMatrix);
            var integralProcess = CreateIntegralProcess(baseProcess);

            var evolution = integralProcess.Apply(_point, _time);

            var baseResult = (OVector)ExtensionStochasticProcess.GetBaseState(evolution.Expectation);

            var baseDim = baseProcess.StateSpace.Dimension;

            var differential = new Matrix(integralProcess.StateSpace.Dimension, baseDim);

            differential.SetSubmatrix(integralProcess.BaseCoordinateIndex(), 0, Matrix.Id(baseDim));

            for (int j = 0; j < baseDim; j++)
            {
                var delta = eps * Vector.Basis(j, baseDim);

                var retarted = baseResult - delta;
                var advanced = baseResult + delta;

                var gradient = (ExpectedFiberResult(advanced) - ExpectedFiberResult(retarted)) / (2 * eps);

                differential.SetSubmatrix(integralProcess.FiberCoordinateIndex(), j, gradient.AsColumn());
            }

            var expectedCovariance = baseProcess.Apply(_basePoint, _time).Covariance.Conjugate(differential);

            Expect((evolution.Covariance - expectedCovariance).FrobeniusNorm(), Is.LessThan(tolerance));
        }