예제 #1
0
        /// <summary>
        /// Run the example.
        /// </summary>
        public void Process()
        {
            // read the iris data from the resources
            Assembly assembly = Assembly.GetExecutingAssembly();
            var res = assembly.GetManifestResourceStream("AIFH_Vol1.Resources.iris.csv");

            // did we fail to read the resouce
            if (res == null)
            {
                Console.WriteLine("Can't read iris data from embedded resources.");
                return;
            }

            // load the data
            var istream = new StreamReader(res);
            DataSet ds = DataSet.Load(istream);
            istream.Close();

            // The following ranges are setup for the Iris data set.  If you wish to normalize other files you will
            // need to modify the below function calls other files.
            ds.NormalizeRange(0, 0, 1);
            ds.NormalizeRange(1, 0, 1);
            ds.NormalizeRange(2, 0, 1);
            ds.NormalizeRange(3, 0, 1);
            IDictionary<String, int> species = ds.EncodeEquilateral(4);

            IList<BasicData> trainingData = ds.ExtractSupervised(0, 4, 4, 2);

            var network = new RBFNetwork(4, 4, 2);
            IScoreFunction score = new ScoreRegressionData(trainingData);
            var train = new TrainGreedyRandom(true, network, score);
            PerformIterations(train, 100000, 0.01, true);
            QueryEquilateral(network, trainingData, species, 0, 1);
        }
예제 #2
0
 /// <summary>
 /// Perform the example.
 /// </summary>
 public void Process()
 {
     var trainingData = BasicData.ConvertArrays(XorInput, XorIdeal);
     var network = new RBFNetwork(2, 5, 1);
     var score = new ScoreRegressionData(trainingData);
     var train = new TrainGreedyRandom(true, network, score);
     PerformIterations(train, 1000000, 0.01, true);
     Query(network, trainingData);
 }
예제 #3
0
        public void TestGreedyRandom()
        {
            var train = new TrainGreedyRandom(true, new TrialAlgo(), new TrialScore()) {LowRange = 0, HighRange = 10};

            Assert.AreEqual(0, train.LowRange, AIFH.DefaultPrecision);
            Assert.AreEqual(10, train.HighRange, AIFH.DefaultPrecision);

            PerformTest(train);
        }
예제 #4
0
 /// <summary>
 /// Run the example.
 /// </summary>
 public void Process()
 {
     IList<BasicData> trainingData = GenerateTrainingData();
     var poly = new PolynomialFn(3);
     IScoreFunction score = new ScoreRegressionData(trainingData);
     var train = new TrainGreedyRandom(true, poly, score);
     PerformIterations(train, 1000000, 0.01, true);
     Console.WriteLine(poly.ToString());
 }