// Test the classification result of each map that a user played, // with the data available as if they were playing through it public static void classifyTest(String dataString, String playerID) { String results = ""; try { java.io.StringReader stringReader = new java.io.StringReader(dataString); java.io.BufferedReader buffReader = new java.io.BufferedReader(stringReader); /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/ //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff"); weka.core.Instances data = new weka.core.Instances(buffReader); //source.getDataSet(); // setting class attribute if the data format does not provide this information // For example, the XRFF format saves the class attribute information as well if (data.classIndex() == -1) { data.setClassIndex(data.numAttributes() - 1); } weka.classifiers.Classifier cl; for (int i = 3; i < data.numInstances(); i++) { cl = new weka.classifiers.bayes.NaiveBayes(); //cl = new weka.classifiers.trees.J48(); //cl = new weka.classifiers.lazy.IB1(); //cl = new weka.classifiers.functions.MultilayerPerceptron(); ((weka.classifiers.functions.MultilayerPerceptron)cl).setHiddenLayers("12"); weka.core.Instances subset = new weka.core.Instances(data, 0, i); cl.buildClassifier(subset); weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(subset); eval.crossValidateModel(cl, subset, 3, new java.util.Random(1)); results = results + eval.pctCorrect(); // For accuracy measurement /* For Mathews Correlation Coefficient */ //double TP = eval.numTruePositives(1); //double FP = eval.numFalsePositives(1); //double TN = eval.numTrueNegatives(1); //double FN = eval.numFalseNegatives(1); //double correlationCoeff = ((TP*TN)-(FP*FN))/Math.Sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)); //results = results + correlationCoeff; if (i != data.numInstances() - 1) { results = results + ", "; } if (i == data.numInstances() - 1) { Debug.Log("Player: " + playerID + ", Num Maps: " + data.numInstances() + ", AUC: " + eval.areaUnderROC(1)); } } } catch (java.lang.Exception ex) { Debug.LogError(ex.getMessage()); } // Write values to file for a matlab read // For accuracy StreamWriter writer = new StreamWriter("DataForMatlab/" + playerID + "_CrossFoldValidations_NeuralNet.txt"); //StreamWriter writer = new StreamWriter("DataForMatlab/"+playerID+"_CrossFoldCorrCoeff.txt"); // For mathews cc writer.WriteLine(results); writer.Close(); Debug.Log(playerID + " has been written to file"); }