/// <summary> /// Find a voltage driver that closes a voltage drive loop. /// </summary> /// <returns> /// The component that closes the loop. /// </returns> private Component FindVoltageDriveLoop() { // Remove the ground node and make a map for reducing the matrix complexity var index = 1; var map = new Dictionary <int, int> { { 0, 0 } }; foreach (var vd in _voltageDriven) { if (vd.Node1 != 0) { if (!map.ContainsKey(vd.Node1)) { map.Add(vd.Node1, index++); } } if (vd.Node2 != 0) { if (!map.ContainsKey(vd.Node2)) { map.Add(vd.Node2, index++); } } } // Determine the rank of the matrix var solver = new RealSolver(Math.Max(_voltageDriven.Count, map.Count)); for (var i = 0; i < _voltageDriven.Count; i++) { var pins = _voltageDriven[i]; solver.GetMatrixElement(i + 1, map[pins.Node1]).Value += 1.0; solver.GetMatrixElement(i + 1, map[pins.Node2]).Value += 1.0; } try { // Try refactoring the matrix solver.OrderAndFactor(); } catch (SingularException exception) { /* * If the rank of the matrix is lower than the number of driven nodes, then * the matrix is not solvable for those nodes. This means that there are * voltage sources driving nodes in such a way that they cannot be solved. */ if (exception.Index <= _voltageDriven.Count) { var indices = new LinearSystemIndices(exception.Index); solver.InternalToExternal(indices); return(_voltageDriven[indices.Row - 1].Source); } } return(null); }
public void When_Factoring_Expect_Reference() { double[][] matrixElements = { new[] { 1.0, 1.0, 1.0 }, new[] { 2.0, 3.0, 5.0 }, new[] { 4.0, 6.0, 8.0 } }; double[][] expected = { new[] { 1.0, 1.0, 1.0 }, new[] { 2.0, 1.0, 3.0 }, new[] { 4.0, 2.0, -0.5 } }; // Create matrix var solver = new RealSolver(); for (var r = 0; r < matrixElements.Length; r++) { for (var c = 0; c < matrixElements[r].Length; c++) { solver.GetMatrixElement(r + 1, c + 1).Value = matrixElements[r][c]; } } // Factor solver.Factor(); // compare for (var r = 0; r < matrixElements.Length; r++) { for (var c = 0; c < matrixElements[r].Length; c++) { Assert.AreEqual(expected[r][c], solver.GetMatrixElement(r + 1, c + 1).Value, 1e-12); } } }
/// <summary> /// Read a .MTX file /// </summary> /// <param name="filename">Filename</param> /// <returns></returns> protected Solver <double> ReadMtxFile(string filename) { Solver <double> result; using (StreamReader sr = new StreamReader(filename)) { // The first line is a comment sr.ReadLine(); // The second line tells us the dimensions string line = sr.ReadLine() ?? throw new Exception("Invalid Mtx file"); var match = Regex.Match(line, @"^(?<rows>\d+)\s+(?<columns>\d+)\s+(\d+)"); int size = int.Parse(match.Groups["rows"].Value); if (int.Parse(match.Groups["columns"].Value) != size) { throw new Exception("Matrix is not square"); } result = new RealSolver(size); // All subsequent lines are of the format [row] [column] [value] while (!sr.EndOfStream) { // Read the next line line = sr.ReadLine(); if (line == null) { break; } match = Regex.Match(line, @"^(?<row>\d+)\s+(?<column>\d+)\s+(?<value>.*)\s*$"); if (!match.Success) { throw new Exception("Could not recognize file"); } int row = int.Parse(match.Groups["row"].Value); int column = int.Parse(match.Groups["column"].Value); double value = double.Parse(match.Groups["value"].Value, System.Globalization.CultureInfo.InvariantCulture); // Set the value in the matrix result.GetMatrixElement(row, column).Value = value; } } return(result); }
/// <summary> /// Reads a matrix file generated by Spice 3f5. /// </summary> /// <param name="matFilename">The matrix filename.</param> /// <param name="vecFilename">The vector filename.</param> /// <returns></returns> protected Solver <double> ReadSpice3f5File(string matFilename, string vecFilename) { var solver = new RealSolver(); // Read the spice file string line; using (var reader = new StreamReader(matFilename)) { // The file is organized using (row) (column) (value) (imag value) while (!reader.EndOfStream && (line = reader.ReadLine()) != null) { if (line == "first") { continue; } var match = Regex.Match(line, @"^(?<size>\d+)\s+(complex|real)$"); // Try to read an element match = Regex.Match(line, @"^(?<row>\d+)\s+(?<col>\d+)\s+(?<value>[^\s]+)(\s+[^\s]+)?$"); if (match.Success) { int row = int.Parse(match.Groups["row"].Value); int col = int.Parse(match.Groups["col"].Value); var value = double.Parse(match.Groups["value"].Value, CultureInfo.InvariantCulture); solver.GetMatrixElement(row, col).Value = value; } } } // Read the vector file using (var reader = new StreamReader(vecFilename)) { var index = 1; while (!reader.EndOfStream && (line = reader.ReadLine()) != null) { var value = double.Parse(line, CultureInfo.InvariantCulture); solver.GetRhsElement(index).Value = value; index++; } } return(solver); }
public void When_QuickDiagonalPivoting_Expect_NoException() { // Build the solver with only the quick diagonal pivoting var solver = new RealSolver(); var strategy = (Markowitz <double>)solver.Strategy; strategy.Strategies.Clear(); strategy.Strategies.Add(new MarkowitzQuickDiagonal <double>()); // Build the matrix that should be solvable using only the singleton pivoting strategy double[][] matrix = { new[] { 1, 0.5, 0, 0 }, new[] { -0.5, 5, 4, 0 }, new[] { 0, 3, 2, 0.1 }, new[] { 0, 0, -0.01, 3 } }; double[] rhs = { 0, 0, 0, 0 }; for (var r = 0; r < matrix.Length; r++) { for (var c = 0; c < matrix[r].Length; c++) { if (!matrix[r][c].Equals(0.0)) { solver.GetMatrixElement(r + 1, c + 1).Value = matrix[r][c]; } } if (!rhs[r].Equals(0.0)) { solver.GetRhsElement(r + 1).Value = rhs[r]; } } // This should run without throwing an exception solver.OrderAndFactor(); }
public void When_OrderAndFactoring2_Expect_Reference() { var solver = new RealSolver(5); solver.GetMatrixElement(1, 1).Value = 1.0; solver.GetMatrixElement(2, 1).Value = 0.0; solver.GetMatrixElement(2, 2).Value = 1.0; solver.GetMatrixElement(2, 5).Value = 0.0; solver.GetMatrixElement(3, 3).Value = 1.0; solver.GetMatrixElement(3, 4).Value = 1e-4; solver.GetMatrixElement(3, 5).Value = -1e-4; solver.GetMatrixElement(4, 4).Value = 1.0; solver.GetMatrixElement(5, 1).Value = 5.38e-23; solver.GetMatrixElement(5, 4).Value = -1e-4; solver.GetMatrixElement(5, 5).Value = 1e-4; solver.OrderAndFactor(); AssertInternal(solver, 1, 1, 1.0); AssertInternal(solver, 2, 1, 0.0); AssertInternal(solver, 2, 2, 1.0); AssertInternal(solver, 2, 5, 0.0); AssertInternal(solver, 3, 3, 1.0); AssertInternal(solver, 3, 4, 1e-4); AssertInternal(solver, 3, 5, -1e-4); AssertInternal(solver, 4, 4, 1.0); AssertInternal(solver, 5, 1, 5.38e-23); AssertInternal(solver, 5, 4, -1e-4); AssertInternal(solver, 5, 5, 10000); }
public void When_OrderAndFactoring_Expect_Reference() { var solver = new RealSolver(); solver.GetMatrixElement(1, 1).Value = 0.0001; solver.GetMatrixElement(1, 4).Value = -0.0001; solver.GetMatrixElement(1, 5).Value = 0.0; solver.GetMatrixElement(2, 1).Value = 0.0; solver.GetMatrixElement(2, 2).Value = 1.0; solver.GetMatrixElement(2, 5).Value = 0.0; solver.GetMatrixElement(3, 1).Value = -0.0001; solver.GetMatrixElement(3, 3).Value = 1.0; solver.GetMatrixElement(3, 4).Value = 0.0001; solver.GetMatrixElement(4, 4).Value = 1.0; solver.GetMatrixElement(5, 5).Value = 1.0; // Order and factor solver.OrderAndFactor(); // Compare Assert.AreEqual(solver.GetMatrixElement(1, 1).Value, 1.0e4); Assert.AreEqual(solver.GetMatrixElement(1, 4).Value, -0.0001); Assert.AreEqual(solver.GetMatrixElement(1, 5).Value, 0.0); Assert.AreEqual(solver.GetMatrixElement(2, 1).Value, 0.0); Assert.AreEqual(solver.GetMatrixElement(2, 2).Value, 1.0); Assert.AreEqual(solver.GetMatrixElement(2, 5).Value, 0.0); Assert.AreEqual(solver.GetMatrixElement(3, 1).Value, -0.0001); Assert.AreEqual(solver.GetMatrixElement(3, 3).Value, 1.0); Assert.AreEqual(solver.GetMatrixElement(3, 4).Value, 0.0001); Assert.AreEqual(solver.GetMatrixElement(4, 4).Value, 1.0); Assert.AreEqual(solver.GetMatrixElement(5, 5).Value, 1.0); }
public void When_Preorder_Expect_Reference() { var solver = new RealSolver(5); solver.GetMatrixElement(1, 1).Value = 1e-4; solver.GetMatrixElement(1, 2).Value = 0.0; solver.GetMatrixElement(1, 3).Value = -1e-4; solver.GetMatrixElement(2, 1).Value = 0.0; solver.GetMatrixElement(2, 2).Value = 0.0; solver.GetMatrixElement(2, 5).Value = 1.0; solver.GetMatrixElement(3, 1).Value = -1e-4; solver.GetMatrixElement(3, 3).Value = 1e-4; solver.GetMatrixElement(3, 4).Value = 1.0; solver.GetMatrixElement(4, 3).Value = 1.0; solver.GetMatrixElement(5, 2).Value = 1.0; SpiceSharp.Simulations.ModifiedNodalAnalysisHelper.PreorderModifiedNodalAnalysis(solver, Math.Abs); AssertInternal(solver, 1, 1, 1e-4); AssertInternal(solver, 1, 4, -1e-4); AssertInternal(solver, 1, 5, 0.0); AssertInternal(solver, 2, 1, 0.0); AssertInternal(solver, 2, 2, 1.0); AssertInternal(solver, 2, 5, 0.0); AssertInternal(solver, 3, 1, -1e-4); AssertInternal(solver, 3, 3, 1.0); AssertInternal(solver, 3, 4, 1e-4); AssertInternal(solver, 4, 4, 1.0); AssertInternal(solver, 5, 5, 1.0); }